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HEROIC PROGRAMMING 
 

Usually a pejorative term, is used to describe the expenditure of huge 
amounts of (coding) effort by talented people to overcome shortcomings in 
process, project management, scheduling, architecture or any other 
shortfalls in the execution of a software development project in order to 
complete it. Heroic Programming is often the only course of action left when 
poor planning, insufficient funds, and impractical schedules leave a project 
stranded and unlikely to complete successfully. 
From http://c2.com/cgi/wiki?HeroicProgramming 
 

Science teams often resemble heroic programming 
Many do not see anything wrong with that approach 
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WHAT IS WRONG WITH 
HEROIC PROGRAMMING 
Scientific results that could be obtained with heroic 
programming have run their course, because: 

 
 
 
 
 
 
 
 
 

 
It is not possible for a single person to take on all these 
roles 
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GENERAL STATE OF 
SCIENTIFIC CODES 

q Start in small groups 
q Accretion leads to unmanageable software 
q Parts of software may become unusable over time 
q Inadequately verified software produces 

questionable results 
q Increases ramp-on time for new developers 
q Reduces software and science productivity due to 

technical debt 
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Technical	
  debt	
  –	
  implementa1on	
  
without	
  design	
  and	
  plan	
  (quick	
  and	
  
dirty)	
  collects	
  interest	
  =>	
  more	
  effort	
  

required	
  to	
  add	
  features	
  later.	
  	
  
	
  

Debt	
  can	
  compound	
  



LOOKING TOWARD FUTURE 
q Codes aiming for higher fidelity modeling 

q More complex codes, simulations and analysis 
q Numerous models, more moving parts that need to 

interoperate 
q Variety of expertise needed – the only tractable development 

model is through separation of concerns 
q It is more difficult to work on the same software in 

different roles without a software engineering process 
q Onset of higher platform heterogeneity 

q Requirements are unfolding, not known apriori  
q The only safeguard is investing in flexible design and 

robust software engineering process 
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"... it seems likely that significant software 
contributions to existing scientific software 
projects are not likely to be rewarded 
through the traditional reputation economy of 
science.  Together these factors provide a 
reason to expect the over-production of 
independent scientific software packages, 
and the underproduction of collaborative 
projects in which later academics build on 
the work of earlier ones." 
 

Howison & Herbsleb (2011) 
 



SOFTWARE PRODUCTIVITY 
CYCLE 
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h+p://www.orau.gov/swproduc1vity2014/SoBwareProduc1vityWorkshopReport2014.pdf	
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LIFECYCLE 
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q Modeling 
q Approximations 
q Discretizations 
q Numerics 

q Convergence 
q Stability 

q Implementation 
q Verification 

q Expected 
behavior 

q Validation 
q Experiment/

observation 
Numerical*solvers*

Valida0on*

Physical*World*

Equa0ons*

Difference*
equa0ons*Implementa0on*

Model*

Discre0ze*

Verify*accuracy*
*stability*

Model**
fidelity*

Model**
fidelity*



GENERAL CHALLENGES 
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Technical 
q All parts can be under research 
q Knowledge growth => change in requirements 
q Real world is messy, so is the software 
 
Sociological 
q Competing priorities and incentives 
q Limited resources  
q Perception of overhead without benefit 
q Interdisciplinary interactions 



VALIDATION CHALLENGES 
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q Interdisciplinary  
q Domain knowledge 
q Applied mathematics 
q Software engineering 

q Exploring uncharted territories 
q Existing knowledge is of limited interest 
q Need to push the boundaries 
q The behavior of solvers not always predictable in regimes 

of interest 

SC	
  Tutorial,	
  November	
  14,	
  2016	
  



VERIFICATION CHALLENGES 
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q Inadequate granularity definition 
q Especially in composable codes 

q Code coverage gives incomplete picture 
q Interoperability coverage as important 

q Legacy components 
q No existing tests of any granularities 
q Examples – multiphysics application codes that support 

multiple domains 
 

SC	
  Tutorial,	
  November	
  14,	
  2016	
  



TESTING CHALLENGES 
q Testing needs differ 

q Extent and granularity  
q Degree of formalization 
q Floating point issues 

q Different results 
q On different platforms and runs 
q Ill-conditioning can magnify these small differences 

q Final solution may be different 
q Number of iterations may be different 

q Unit testing 
q Isolating behavior can be difficult 
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CONSIDERATIONS FOR 
CUSTOMIZATION 
q There is no “all or none” 

q Focus on improving productivity  
q Minimize bias  

q Fine balance between buy-in and imposition  
q Show benefit to convert 

q Overcome resistance to change 
q Allay suspicion of new processes 
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EVALUATE PROJECT NEEDS 
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q Objectives 
q Proof of concept 
q Limited research use 
q Library  
q Production – simulations and analysis 

q Team 
q Number of developers 
q Background of developers 
q Geographical spread 



EVALUATE PROJECT NEEDS 
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q Lifecycle stages 
q Lifetime 

q How long a code is expected to live 
q New code versus some legacy components 

q Complexity 
q Number of modules, models, data structures, solvers 
q Degree of coupling and interoperability requirements 
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BASELINE 
q Customize process 
q Invest in code design 
q Use version control and automated testing 
q Institute appropriate verification and validation 

regime 
q Define coding and testing standards 
q Clear and well defined policies for  

q Auditing and maintenance 
q Distribution and contribution 
q Documentation 
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DESIRABLE 

q Provenance and reproducibility 
q Lifecycle management 
q Open development and frequent releases 



Cellular detonation 
Helium burning on neutron stars 

Richtmyer-Meshkov instability 

Laser-driven shock instabilities 
Nova outbursts on white dwarfs Rayleigh-Taylor instability 

Gravitational collapse/Jeans 
instability 

Wave breaking on white dwarfs 

Shortly: Relativistic accretion onto NS 

Orzag/Tang MHD 
vortex 

Gravitationally confined 
detonation 

Intracluster interactions 

Magnetic 
Rayleigh-Taylor 

Turbulent Nuclear Burning                               
1.  Parallel, adaptive-mesh refinement (AMR) code 
2.  Has been in public release for 16 years 
3.  Can solve a broad range of problems 
4.  Fully modular and extensible: components can be 

combined to create many different applications 
5.  Serves half a dozen research communities 

EXAMPLE : FLASH 



q SVN for Version Control 
q Production branches for different projects  

q Online Coding Violation Tracking and Bugzilla 
q Unfinished tasks, bugs, bad code, developer queries 

q Profiling Tools 
q Memory / speed diagnostic tools 

q Documentation 
q Online documentation 
q User’s guide in HTML and PDF 
q Online developers guide 

q User Support 
q Email users’ group 
q Periodic tutorials (presentations remain online) 

AUDITING PROCESS 
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A partnership model that works 
q Science users treat the code as a research instrument 

that needs its own research 
q Developers and computer scientists interested in a 

product and the science being done with the code 
q Helps to have people with multidisciplinary training  

q Comparable resources and autonomy for the developers 
q And recognition of their intellectual contribution to scientific 

discovery 

q Careful balance between long term and short term 
objectives 

INTERDISCIPLINARY 
INTERACTIONS 



CONTRIBUTION AND 
ATTRIBUTION POLICIES 

q  Balancing act between IP protection and openness 
q  Pre-negotiated period of time when the code exists in FLASH repo but is not 

released 

q  The contribution includes tests 
q  At least one example setup and documentation 
q  All contributions are acknowledged in user’s guide and release 

notes 
q  The contributors can also provide publications to be cited 



 THE TESTS COLLECTION 



THE TEST SUITE 
❑  Runs	
  a	
  variety	
  of	
  problems	
  on	
  mul1ple	
  pla^orms	
  on	
  a	
  daily	
  basis	
  
❑  A	
  pla^orm	
  is	
  defined	
  as	
  a	
  combina1on	
  of	
  hardware,	
  OS	
  and	
  compiler	
  

suite	
  
❑  In-­‐house	
  soBware	
  manages	
  automated	
  runs	
  
❑  Also	
  provides	
  web	
  interface	
  for	
  inspec1on	
  and	
  modifica1on	
  of	
  tests	
  

Green	
  light	
  indicates	
  all	
  runs	
  
were	
  successful	
  

Date	
  of	
  run	
  

Pla^orm	
  

Floa1ng	
  sta1s1cs	
  box	
  gives	
  
immediate	
  overview	
  of	
  results	
  

Red	
  light	
  indicates	
  1	
  or	
  more	
  tests	
  
failed	
  

FlashTest	
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q  There are many reasons why software engineering 
practices are good and should be encouraged
q  Science and engineering by simulation needs more 

scrutiny into the methods and software
q  There is no need to keep reinventing the wheel

q  This is especially true of book-keeping work
q  Reuse infrastructural components

q  The days of heroic programming are past, 
collaborative efforts are more productive

q  They are indispensible for large-scale 
computing 

CONCLUSIONS 

It is extremely important to recognize that science through computing is only as 
good as the software that produces it



USEFUL RESOURCES 
https://ideas-productivity.org/resources/howtos/ 
 
q ‘What Is’ docs: 2-page characterizations of 

important topics for SW projects in computational 
science & engineering (CSE) 

q ‘How To’ docs: brief sketch of best practices 
q Emphasis on ``bite-sized'' topics enables CSE software teams 

to consider improvements at a small but impactful scale 
q We welcome feedback from the community to help 

make these documents more useful 
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cse-software.org: Join the community 

30	
  

Contribute	
  to	
  
and	
  share	
  
ac2vi2es	
  and	
  
resources	
  for	
  
CSE	
  so7ware	
  
produc2vity	
  
and	
  so7ware	
  
engineering	
  



OTHER RESOURCES 
http://www.software.ac.uk/ 
 
http://software-carpentry.org/ 
 
http://flash.uchicago.edu/cc2012/ 
 
http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745 
 
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4375255 
 
http://www.orau.gov/swproductivity2014/
SoftwareProductivityWorkshopReport2014.pdf 
 
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6171147 
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LAST THOUGHT: WHAT CAN HAPPEN WHEN 
PROCESS IS IGNORED 
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q  Many in-flight corrections of defects
q  One was adding tags to track individual particles

q  Got many duplicated tags due to round-
off

q  Had to develop post-processing tools to correctly 
identify trajectories

q  In 2005 BG/L was made 
available at short notice

q  Quick and dirty 
development of particles
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FLASH	
  had	
  a	
  soBware	
  process	
  	
  

Process	
  was	
  short	
  circuited	
  due	
  to	
  1me	
  constraints	
  
	
  
.	
  

We	
  got	
  ready	
  for	
  the	
  run	
  in	
  less	
  than	
  a	
  month,	
  
the	
  run	
  went	
  for	
  1.5	
  weeks,	
  and	
  it	
  took	
  over	
  6	
  
months	
  before	
  we	
  could	
  trust	
  the	
  results.	
  



SURVEY OF IDEAS USE-
CASES 
IDEAS scientific software productivity project: 
www.ideas-productivity.org 
 
q Five application codes and four numerical libraries 
q All use version control, and all but one use distributed 

version control 
q Builds are evenly divided between GNU make and CMake 
q All provide documentation with some form of user’s guide, 

many use automated documentation generation tools 
q All have testing in some form, a couple do manual 

regression testing, the rest are automated 
q Roughly half make use of unit testing explicitly 
q Majority are publicly available 
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SUMMARY FROM COMMUNITY 
CODES WORKSHOP (2012) 

http://flash.uchicago.edu/cc2012/ 
 
q Codes – FLASH, Cactus, Enzo, ESMF, Lattice QCD code-

suite, AMBER, Chombo, and yt 
q Software architecture is almost always in the form of 

composable components 
q Need for extensibility 

q All codes have rigorous auditing processes in place 
q Gatekeeping for contributions, though models are different 
q All codes have wide user communities, and the communities 

benefit from a common highly exercised code base 
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