
OCTOBER 13, 2016
ANSHU DUBEY
MATHEMATICS AND COMPUTER SCIENCE DIVISION
ARGONNE NATIONAL LABORATORY

SOFTWARE
PRACTICES IN
COMPUTATIONAL
SCIENCE
COMMUNITIES –
AN OVERVIEW

OUTLINE

q Motivation

q Customization

q Best Practices

10/13/16	
 2	

HEROIC PROGRAMMING

Usually a pejorative term, is used to describe the expenditure of huge
amounts of (coding) effort by talented people to overcome shortcomings in
process, project management, scheduling, architecture or any other
shortfalls in the execution of a software development project in order to
complete it. Heroic Programming is often the only course of action left when
poor planning, insufficient funds, and impractical schedules leave a project
stranded and unlikely to complete successfully.
From http://c2.com/cgi/wiki?HeroicProgramming

Science teams often resemble heroic programming
Many do not see anything wrong with that approach

10/13/16	
 3	

WHAT IS WRONG WITH
HEROIC PROGRAMMING
Scientific results that could be obtained with heroic
programming have run their course, because:

It is not possible for a single person to take on all these
roles

10/13/16	
 4	

Be+er	
 scien1fic	

understanding	

Different	

roles	
 	

and	

responsi-­‐
bili1es	

More	
 complex	

soBware	

Math	
 model	
 	

Numerics	

Verifica1on	

Performance	

GENERAL STATE OF
SCIENTIFIC CODES

q Start in small groups
q Accretion leads to unmanageable software
q Parts of software may become unusable over time
q Inadequately verified software produces

questionable results
q Increases ramp-on time for new developers
q Reduces software and science productivity due to

technical debt

 10/13/16	
 5	

10/13/16	
 6	

Technical	
 debt	
 –	
 implementa1on	

without	
 design	
 and	
 plan	
 (quick	
 and	

dirty)	
 collects	
 interest	
 =>	
 more	
 effort	

required	
 to	
 add	
 features	
 later.	
 	

	

Debt	
 can	
 compound	

LOOKING TOWARD FUTURE
q Codes aiming for higher fidelity modeling

q More complex codes, simulations and analysis
q Numerous models, more moving parts that need to

interoperate
q Variety of expertise needed – the only tractable development

model is through separation of concerns
q It is more difficult to work on the same software in

different roles without a software engineering process
q Onset of higher platform heterogeneity

q Requirements are unfolding, not known apriori
q The only safeguard is investing in flexible design and

robust software engineering process

10/13/16	
 7	

"... it seems likely that significant software
contributions to existing scientific software
projects are not likely to be rewarded
through the traditional reputation economy of
science. Together these factors provide a
reason to expect the over-production of
independent scientific software packages,
and the underproduction of collaborative
projects in which later academics build on
the work of earlier ones."

Howison & Herbsleb (2011)

SOFTWARE PRODUCTIVITY
CYCLE

10/13/16	
 9	

h+p://www.orau.gov/swproduc1vity2014/SoBwareProduc1vityWorkshopReport2014.pdf	

OUTLINE

q Motivation

q Customization

q Best Practices

10/13/16	
 10	

LIFECYCLE

10/13/16	
 11	

q Modeling
q Approximations
q Discretizations
q Numerics

q Convergence
q Stability

q Implementation
q Verification

q Expected
behavior

q Validation
q Experiment/

observation
Numerical*solvers*

Valida0on*

Physical*World*

Equa0ons*

Difference*
equa0ons*Implementa0on*

Model*

Discre0ze*

Verify*accuracy*
stability

Model**
fidelity*

Model**
fidelity*

GENERAL CHALLENGES

10/13/16	
 12	

Technical
q All parts can be under research
q Knowledge growth => change in requirements
q Real world is messy, so is the software

Sociological
q Competing priorities and incentives
q Limited resources
q Perception of overhead without benefit
q Interdisciplinary interactions

VALIDATION CHALLENGES

13	

q Interdisciplinary
q Domain knowledge
q Applied mathematics
q Software engineering

q Exploring uncharted territories
q Existing knowledge is of limited interest
q Need to push the boundaries
q The behavior of solvers not always predictable in regimes

of interest

SC	
 Tutorial,	
 November	
 14,	
 2016	

VERIFICATION CHALLENGES

14	

q Inadequate granularity definition
q Especially in composable codes

q Code coverage gives incomplete picture
q Interoperability coverage as important

q Legacy components
q No existing tests of any granularities
q Examples – multiphysics application codes that support

multiple domains

SC	
 Tutorial,	
 November	
 14,	
 2016	

TESTING CHALLENGES
q Testing needs differ

q Extent and granularity
q Degree of formalization
q Floating point issues

q Different results
q On different platforms and runs
q Ill-conditioning can magnify these small differences

q Final solution may be different
q Number of iterations may be different

q Unit testing
q Isolating behavior can be difficult

10/13/16	
 15	

CONSIDERATIONS FOR
CUSTOMIZATION
q There is no “all or none”

q Focus on improving productivity
q Minimize bias

q Fine balance between buy-in and imposition
q Show benefit to convert

q Overcome resistance to change
q Allay suspicion of new processes

10/13/16	
 16	

EVALUATE PROJECT NEEDS

17	

q Objectives
q Proof of concept
q Limited research use
q Library
q Production – simulations and analysis

q Team
q Number of developers
q Background of developers
q Geographical spread

EVALUATE PROJECT NEEDS

18	

q Lifecycle stages
q Lifetime

q How long a code is expected to live
q New code versus some legacy components

q Complexity
q Number of modules, models, data structures, solvers
q Degree of coupling and interoperability requirements

OUTLINE

q Motivation

q Customization

q Best Practices

10/13/16	
 19	

10/13/16	
 20	

BASELINE
q Customize process
q Invest in code design
q Use version control and automated testing
q Institute appropriate verification and validation

regime
q Define coding and testing standards
q Clear and well defined policies for

q Auditing and maintenance
q Distribution and contribution
q Documentation

10/13/16	
 21	

DESIRABLE

q Provenance and reproducibility
q Lifecycle management
q Open development and frequent releases

Cellular detonation
Helium burning on neutron stars

Richtmyer-Meshkov instability

Laser-driven shock instabilities
Nova outbursts on white dwarfs Rayleigh-Taylor instability

Gravitational collapse/Jeans
instability

Wave breaking on white dwarfs

Shortly: Relativistic accretion onto NS

Orzag/Tang MHD
vortex

Gravitationally confined
detonation

Intracluster interactions

Magnetic
Rayleigh-Taylor

Turbulent Nuclear Burning
1.  Parallel, adaptive-mesh refinement (AMR) code
2.  Has been in public release for 16 years
3.  Can solve a broad range of problems
4.  Fully modular and extensible: components can be

combined to create many different applications
5.  Serves half a dozen research communities

EXAMPLE : FLASH

q SVN for Version Control
q Production branches for different projects

q Online Coding Violation Tracking and Bugzilla
q Unfinished tasks, bugs, bad code, developer queries

q Profiling Tools
q Memory / speed diagnostic tools

q Documentation
q Online documentation
q User’s guide in HTML and PDF
q Online developers guide

q User Support
q Email users’ group
q Periodic tutorials (presentations remain online)

AUDITING PROCESS

10/13/16	
 24	

A partnership model that works
q Science users treat the code as a research instrument

that needs its own research
q Developers and computer scientists interested in a

product and the science being done with the code
q Helps to have people with multidisciplinary training

q Comparable resources and autonomy for the developers
q And recognition of their intellectual contribution to scientific

discovery

q Careful balance between long term and short term
objectives

INTERDISCIPLINARY
INTERACTIONS

CONTRIBUTION AND
ATTRIBUTION POLICIES

q  Balancing act between IP protection and openness
q  Pre-negotiated period of time when the code exists in FLASH repo but is not

released

q  The contribution includes tests
q  At least one example setup and documentation
q  All contributions are acknowledged in user’s guide and release

notes
q  The contributors can also provide publications to be cited

 THE TESTS COLLECTION

THE TEST SUITE
❑  Runs	
 a	
 variety	
 of	
 problems	
 on	
 mul1ple	
 pla^orms	
 on	
 a	
 daily	
 basis	

❑  A	
 pla^orm	
 is	
 defined	
 as	
 a	
 combina1on	
 of	
 hardware,	
 OS	
 and	
 compiler	

suite	

❑  In-­‐house	
 soBware	
 manages	
 automated	
 runs	

❑  Also	
 provides	
 web	
 interface	
 for	
 inspec1on	
 and	
 modifica1on	
 of	
 tests	

Green	
 light	
 indicates	
 all	
 runs	

were	
 successful	

Date	
 of	
 run	

Pla^orm	

Floa1ng	
 sta1s1cs	
 box	
 gives	

immediate	
 overview	
 of	
 results	

Red	
 light	
 indicates	
 1	
 or	
 more	
 tests	

failed	

FlashTest	

10/13/16	
 28	

q  There are many reasons why software engineering
practices are good and should be encouraged
q  Science and engineering by simulation needs more

scrutiny into the methods and software
q  There is no need to keep reinventing the wheel

q  This is especially true of book-keeping work
q  Reuse infrastructural components

q  The days of heroic programming are past,
collaborative efforts are more productive

q  They are indispensible for large-scale
computing

CONCLUSIONS

It is extremely important to recognize that science through computing is only as
good as the software that produces it

USEFUL RESOURCES
https://ideas-productivity.org/resources/howtos/

q ‘What Is’ docs: 2-page characterizations of

important topics for SW projects in computational
science & engineering (CSE)

q ‘How To’ docs: brief sketch of best practices
q Emphasis on ``bite-sized'' topics enables CSE software teams

to consider improvements at a small but impactful scale
q We welcome feedback from the community to help

make these documents more useful

10/13/16	
 29	

cse-software.org: Join the community

30	

Contribute	
 to	

and	
 share	

ac2vi2es	
 and	

resources	
 for	

CSE	
 so7ware	

produc2vity	

and	
 so7ware	

engineering	

OTHER RESOURCES
http://www.software.ac.uk/

http://software-carpentry.org/

http://flash.uchicago.edu/cc2012/

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4375255

http://www.orau.gov/swproductivity2014/
SoftwareProductivityWorkshopReport2014.pdf

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6171147

10/13/16	
 31	

LAST THOUGHT: WHAT CAN HAPPEN WHEN
PROCESS IS IGNORED

10/13/16	
 32	

q  Many in-flight corrections of defects
q  One was adding tags to track individual particles

q  Got many duplicated tags due to round-
off

q  Had to develop post-processing tools to correctly
identify trajectories

q  In 2005 BG/L was made
available at short notice

q  Quick and dirty
development of particles

10/13/16	
 33	

	

FLASH	
 had	
 a	
 soBware	
 process	
 	

Process	
 was	
 short	
 circuited	
 due	
 to	
 1me	
 constraints	

	

.	

We	
 got	
 ready	
 for	
 the	
 run	
 in	
 less	
 than	
 a	
 month,	

the	
 run	
 went	
 for	
 1.5	
 weeks,	
 and	
 it	
 took	
 over	
 6	

months	
 before	
 we	
 could	
 trust	
 the	
 results.	

SURVEY OF IDEAS USE-
CASES
IDEAS scientific software productivity project:
www.ideas-productivity.org

q Five application codes and four numerical libraries
q All use version control, and all but one use distributed

version control
q Builds are evenly divided between GNU make and CMake
q All provide documentation with some form of user’s guide,

many use automated documentation generation tools
q All have testing in some form, a couple do manual

regression testing, the rest are automated
q Roughly half make use of unit testing explicitly
q Majority are publicly available

10/13/16	
 34	

SUMMARY FROM COMMUNITY
CODES WORKSHOP (2012)

http://flash.uchicago.edu/cc2012/

q Codes – FLASH, Cactus, Enzo, ESMF, Lattice QCD code-

suite, AMBER, Chombo, and yt
q Software architecture is almost always in the form of

composable components
q Need for extensibility

q All codes have rigorous auditing processes in place
q Gatekeeping for contributions, though models are different
q All codes have wide user communities, and the communities

benefit from a common highly exercised code base

10/13/16	
 35	

