Resolution Analysis By Random Probing

Andreas Fichtner
ETH Zurich
Tristan van Leeuwen
Utrecht University

"Solving an inverse problem means to describe the infinite-dimensional space of data-fitting models."

George Backus \& Freeman Gilbert, 1968

1. Why resolution analysis is becoming more and more difficult

A simple example

The Resolution Matrix

True Earth model
Dimension N.

Estimated Earth model
Dimension N. smeared into an image. Dimension $\mathrm{N} \times \mathrm{N}$.

The Resolution Matrix

Resolution matrix How the true Earth is smeared into an image. Dimension $\mathrm{N} \times \mathrm{N}$.

Estimated Earth model Dimension N.

- In the days of Backus \& Gilbert: $\mathrm{N}=\mathrm{O}\left(10^{2}\right) \rightarrow \mathbf{R}$ is $O\left(10^{2}\right)$ times larger than \mathbf{m}.

The Resolution Matrix

Resolution matrix How the true Earth is smeared into an image. Dimension $\mathrm{N} \times \mathrm{N}$.

Estimated Earth model Dimension N.

- In the days of Backus \& Gilbert: $\quad \mathbf{N}=O\left(10^{2}\right) \rightarrow \mathbf{R}$ is $O\left(10^{2}\right)$ times larger than \mathbf{m}.
- Today: $\mathrm{N}=\mathrm{O}\left(10^{7}\right) \rightarrow \mathbf{R}$ is $O\left(10^{7}\right)$ times larger than \mathbf{m}.

The Resolution Matrix

Resolution matrix How the true Earth is
smeared into an image.
Dimension $\mathrm{N} \times \mathrm{N}$.

True Earth model
Dimension N.

Estimated Earth model Dimension N.

- In the days of Backus \& Gilbert: $\mathrm{N}=O\left(10^{2}\right) \rightarrow \mathbf{R}$ is $O\left(10^{2}\right)$ times larger than \mathbf{m}.
- Today:
$\mathrm{N}=\mathrm{O}\left(10^{7}\right) \rightarrow \mathbf{R}$ is $O\left(10^{7}\right)$ times larger than \mathbf{m}.
- As data volumes and computing power grow:
$>$ We can construct bigger and bigger models $\mathbf{m}_{\text {est }}$.

The Resolution Matrix

Resolution matrix How the true Earth is
smeared into an image.
Dimension $\mathrm{N} \times \mathrm{N}$.

True Earth model
Dimension N.

Estimated Earth model
Dimension N.

The problem:

- In the days of Backus \& Gilbert: $\quad \mathbf{N}=O\left(10^{2}\right) \rightarrow \mathbf{R}$ is $O\left(10^{2}\right)$ times larger than \mathbf{m}.
- Today:
$\mathbf{N}=O\left(10^{7}\right) \rightarrow \mathbf{R}$ is $O\left(10^{7}\right)$ times larger than \mathbf{m}.
- As data volumes and computing power grow:
$>$ We can construct bigger and bigger models $\boldsymbol{m}_{\text {est }}$.
> We loose our ability to quantify the quality of $\boldsymbol{m}_{\text {est }}$.

We need scalable methods to infer useful aspects of resolution.

We need scalable methods to infer useful aspects of resolution.

Objectives of this Webinar:

- Describe 2 methods to quantify resolution when \mathbf{R} is too expensive to compute and too big to store.
- One method for linear problems, and one for (mildly) nonlinear problems.
- Both based on random probing techniques.

2. Estimating the number of resolved parameters

$$
\operatorname{tr} \mathbf{R}
$$

Estimating The Number Of Resolved Parameters

m_{i}

- random test model vector
- Expectation: $\mathrm{E}\left[\mathrm{m}_{\mathrm{i}}\right]=0$
- Covariance: $\operatorname{cov}\left(\mathrm{m}_{\mathrm{i}}, \mathrm{m}_{\mathrm{j}}\right)=\delta_{\mathrm{ij}}$ [uncorrelated components]

Estimating The Number Of Resolved Parameters

m_{i}
R_{ij}

- random test model vector
- Expectation: $\mathrm{E}\left[\mathrm{m}_{\mathrm{i}}\right]=0$
- Covariance: $\operatorname{cov}\left(m_{i}, m_{j}\right)=\delta_{i j}$ [uncorrelated components]
- A resolution matrix

Estimating The Number Of Resolved Parameters

```
m
Rij
E[min}\mp@subsup{\textrm{R}}{\textrm{ij}}{}\mp@subsup{m}{j}{j}
- random test model vector
- Expectation: \(\mathrm{E}\left[\mathrm{m}_{\mathrm{i}}\right]=0\)
- Covariance: \(\operatorname{cov}\left(\mathrm{m}_{\mathrm{i}}, \mathrm{m}_{\mathrm{j}}\right)=\delta_{\mathrm{ij}}\) [uncorrelated components]
- A resolution matrix
```


Estimating The Number Of Resolved Parameters

```
m
```


- random test model vector
- Expectation: $\mathrm{E}\left[\mathrm{m}_{\mathrm{i}}\right]=0$
- Covariance: $\operatorname{cov}\left(\mathrm{m}_{\mathrm{i}}, \mathrm{m}_{\mathrm{j}}\right)=\delta_{\mathrm{ij}}$ [uncorrelated components]
- A resolution matrix

$$
\mathrm{E}\left[\mathrm{~m}_{\mathrm{i}} \mathrm{R}_{\mathrm{ij}} \mathrm{~m}_{\mathrm{j}}\right]=\mathrm{R}_{\mathrm{ij}} \mathrm{E}\left[\mathrm{~m}_{\mathrm{i}} \mathrm{~m}_{\mathrm{j}}\right]
$$

Estimating The Number Of Resolved Parameters

```
m
R ij
```

$$
\begin{aligned}
E\left[m_{i} R_{i j} m_{j}\right] & =R_{i j} E\left[m_{i} m_{j}\right] \\
& =R_{i j}\left(E\left[m_{i}\right] E\left[m_{j}\right]+\operatorname{cov}\left(m_{i}, m_{j}\right)\right)
\end{aligned}
$$

Estimating The Number Of Resolved Parameters

```
mi
- random test model vector
- Expectation: E[m;]=0
- Covariance: cov(m}\mp@subsup{m}{\textrm{i}}{,}\mp@subsup{\textrm{m}}{\textrm{j}}{})=\mp@subsup{\delta}{\textrm{ij}}{}\mathrm{ [uncorrelated components]
- A resolution matrix
```

$$
\begin{aligned}
E\left[m_{i} R_{i j} m_{j}\right] & =R_{i j} E\left[m_{i} m_{j}\right] \\
& =R_{i j}\left(E\left[m_{i}\right] E\left[m_{j}\right]+\operatorname{cov}\left(m_{i}, m_{j}\right)\right) \\
& =R_{i j} \delta_{i j}=R_{i i}=\operatorname{tr} R
\end{aligned}
$$

Estimating The Number Of Resolved Parameters

```
mi
R ij
\[
\begin{aligned}
E\left[m_{i} R_{i j} m_{j}\right] & =R_{i j} E\left[m_{i} m_{j}\right] \\
& =R_{i j}\left(E\left[m_{i}\right] E\left[m_{j}\right]+\operatorname{cov}\left(m_{i}, m_{j}\right)\right) \\
& =R_{i j} \delta_{i j}=R_{i i}=\operatorname{tr} R=\text { number of resolved model parameters }
\end{aligned}
\]
```

Hutchinson's method [Hutchinson, 1990]

Estimating The Number Of Resolved Parameters

m_{i}

- random test model vector
- Expectation: $E\left[m_{i}\right]=0$
- Covariance: $\operatorname{cov}\left(\mathrm{m}_{\mathrm{i}}, \mathrm{m}_{\mathrm{j}}\right)=\delta_{\mathrm{ij}}$ [uncorrelated components]
- A resolution matrix

```
\(E\left[m_{i} R_{i j} m_{j}\right]=R_{i j} E\left[m_{i} m_{j}\right]\)
    \(=R_{i j}\left(E\left[m_{i}\right] E\left[m_{j}\right]+\operatorname{cov}\left(m_{i}, m_{j}\right)\right)\)
    \(=R_{i j} \delta_{i j}=R_{i i}=\operatorname{tr} R=\) number of resolved model parameters
```


Very simple recipe:

- Choose a random test model \mathbf{m}.
- Try to recover this model in a synthetic inversion [i.e. compute $\mathbf{m}_{\text {est }}=\mathbf{R m}$].
- Multiply the result with \boldsymbol{m} itself: $\boldsymbol{m}^{\top} \boldsymbol{m}_{\text {est }}=\mathbf{m}^{\top} \mathbf{R m}$.
- Average over some random realisations.
- The resolution matrix itself never has to be computed!

Other Random Probing Techniques

Hutchinson, M. F. (1990), A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines, Comm. Stat. Sim., 19, 433-450.

An, M. (2012), A simple method for determining the spatial resolution of a general inverse problem, Geophys. J. Int., 191, 849-864.

Avron, H., and S. Toledo (2011), Randomized algorithms for estimating the trace of an implicit symmetric positive semidefinite matrix, J. Ass. Comp. Mach., 58, doi:10.1145/1944,345.

Drineas, P., R. Kannan, and M. W. Mahoney (2006), Fast Monte Carlo algorithms for matrices II: Computing a low-rank approximation to a matrix, SIAM J. Comput., 36, 158-183.

Frieze, A., R. Kannan, and S. Vempala (2004), Fast Monte Carlo algorithms for finding low-rank approximations, J. Assoc. Comput. Mach., 51, 1025-1041.

Halko, N., P. G. Martinsson, and J. A. Tropp (2011), Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, SIAM Review, 53, 217-288.

MacCarthy, J. K., B. Borchers, and R. C. Aster (2011), Efficient stochastic estimation of the model resolution matrix diagonal and generalized cross-validation for large geophysical inverse problems, J. Geophys. Res., 116, doi: 1029/2011JB008,234.

Trampert, J., and A. Fichtner (2013), Resolution tests revisited: The power of random numbers, Geophys. J. Int., 192, 676-680.

3. Random probing for resolution analysis in tomography

Estimating position- and direction-dependent resolution lengths.

Point-Spread Functions

- Misfit χ in the vicinity of the optimal model \mathbf{m} :

$$
\chi(\mathbf{m}+\delta \mathbf{m})=\chi(\mathbf{m})+\frac{1}{2} \delta \mathbf{m}^{T} \mathbf{H}(\mathbf{m}) \delta \mathbf{m}
$$

Hessian operator
Inverse posterior covariance [assuming Gaussian errors]
Column: point-spread function
\mathbf{H} is too expensive to compute and store.

- But we can infer properties of \mathbf{H} from its application to random test models.

Random Probing Principle

- Assume \mathbf{H} is Gaussian [for simplicity and illustration]:

$$
\begin{aligned}
& H(x ; y)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}(x-y)^{2}} \\
& h(y)=\int H(x ; y) v(x) d x \\
& \uparrow \\
& \text { random test model }
\end{aligned}
$$

Random Probing Principle

- Assume \mathbf{H} is Gaussian [for simplicity and illustration]:

$$
\begin{aligned}
& H(x ; y)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}(x-y)^{2}} \\
& h(y)=\int H(x ; y) v(x) d x \\
& \uparrow_{\text {random test model }}
\end{aligned}
$$

- Length scales of \mathbf{h} contain information on length scales of \mathbf{H}.

Random Probing Principle

- Auto-correlation of the output \mathbf{h} [averaged over many realisations]:
average auto-correlations of h
[for $1,2,3,5,10,20,50$ samples]

Random Probing Principle

- Auto-correlation of the output \mathbf{h} [averaged over many realisations]:
- Asymptotically: width of auto-correlation $=\sqrt{ } 2 \cdot$ width of \mathbf{H}
average auto-correlations of h
[for 1, 2, 3, 5, 10, 20, 50 samples]

estimated with of \mathbf{H}

Preliminary Conclusions

1. Resolution and correlations

- The Hessian acts as a smoother of random functions.
- The smoothed functions carry information on resolution.
- Can be extracted with correlations.

2. Convergence

- Correlations themselves may require large sample sizes to converge.
- The width of the correlation converges extremely quickly.
> Useful resolution proxies may already be obtained with very few samples.

Synthetic full-waveform inversion in 2D

Synthetic Example In 2D

- Synthetic inversion setup

Synthetic Example In 2D

- Synthetic inversion setup

Synthetic Example In 2D

- Application of random test models to the Hessian via second-order adjoints
- Local auto-correlation of the output in different directions.

Synthetic Example In 2D

- Application of random test models to the Hessian via second-order adjoints.
- Local auto-correlation of the output in different directions.
- Estimated width of the point-spread functions in \mathbf{x}_{1}-direction [resolution length].

- Around 5-10 samples to converge.
- Resolution is strongly heterogeneous.

Synthetic Example In 2D

- Estimated width of the point-spread functions in $\mathbf{x}_{\mathbf{2}}$-direction [resolution length].

Real-data application

Inversion Setup

Technical summary:

Data

- 52 earthquakes, >1000 stations
- body waves, surface waves, ...
- periods: 10-150 s

Forward modelling

- spectral elements
- 3D visco-elastic, anisotropic

Inversion

- initial model from previous European FWI
- adjoint-based CG
- invert for $\mathrm{v}_{\mathrm{sh}}, \mathrm{v}_{\mathrm{sv}}, \mathrm{v}_{\mathrm{p}}, \rho$ and source location/mechanism

S Velocity Model

isotropic S velocity

crustal velocities, $\mathrm{v}_{\mathrm{s}}[\mathrm{km} / \mathrm{s}]$

15 km

mantle velocities, $\mathrm{v}_{\mathrm{s}}[\mathrm{km} / \mathrm{s}]$

S Velocity Model

isotropic S velocity variations

S Velocity Model

$\Delta \mathrm{v}_{\mathrm{s}}[\mathrm{km} / \mathrm{s}]$		
-0.32	0.0	0.27

Position- and Direction-Dependent Resolution Lengths

Conclusions

Limitations:

1. Local analysis

Limitations:

1. Local analysis

Benefits:

1. Quantify spatial resolution and inter-parameter trade-offs.

Limitations:

1. Local analysis

Benefits:

1. Quantify spatial resolution and inter-parameter trade-offs.
2. Low computational costs

- around 5 Hessian-model applications
- equivalent to around 5 CG iterations
- much less than a synthetic inversion

Limitations:

1. Local analysis

Benefits:

1. Quantify spatial resolution and inter-parameter trade-offs.
2. Low computational costs

- around 5 Hessian-model applications
- equivalent to around 5 CG iterations
- much less than a synthetic inversion

3. Low algorithmic complexity

- easy to implement without modifications of existing codes

Limitations:

1. Local analysis

Benefits:

1. Quantify spatial resolution and inter-parameter trade-offs.
2. Low computational costs

- around 5 Hessian-model applications
- equivalent to around 5 CG iterations
- much less than a synthetic inversion

3. Low algorithmic complexity

- easy to implement without modifications of existing codes

4. Scalability

- 5 random models sufficient in 1, 2 and 3 dimensions [empirical]

Limitations:

1. Local analysis

Benefits:

1. Quantify spatial resolution and inter-parameter trade-offs.
2. Low computational costs

- around 5 Hessian-model applications
- equivalent to around 5 CG iterations
- much less than a synthetic inversion

3. Low algorithmic complexity

- easy to implement without modifications of existing codes

4. Scalability

- 5 random models sufficient in 1, 2 and 3 dimensions [empirical]

5. Applicability to any tomographic technique

Thanks for your attention!

