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"Solving an inverse problem means to describe the infinite-dimensional
space of data-fitting models."

George Backus & Freeman Gilbert, 1968



1. Why resolution analysis is becoming more and more difficult

A simple example



THE RESOLUTION MATRIX

R mtrue= est

Resolution matrix How True Earth model Estimated Earth model
the true Earth is Dimension N. Dimension N.
smeared into an image.
Dimension N x N.
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THE RESOLUTION MATRIX

The problem:

* Inthe days of Backus & Gilbert: N = O(10%) = Ris O(10?) times larger than m.
* Today: N = O(107) = Ris O(107) times larger than m.

* As data volumes and computing power grow:

» We can construct bigger and bigger models m_.
> We loose our ability to quantify the quality of m_,.



We need scalable methods to infer useful aspects of resolution.



We need scalable methods to infer useful aspects of resolution.

Objectives of this Webinar:

* Describe 2 methods to quantify resolution when R is too expensive to compute and too big to store.
* One method for linear problems, and one for (mildly) nonlinear problems.

* Both based on random probing techniques.



2. Estimating the number of resolved parameters

tr R
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e A resolution matrix

N

Too large to computer.
Too large to store.
Too large to comprehend fully.
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ESTIMATING THE NUMBER OF RESOLVED PARAMETERS

m, * random test model vector
* Expectation: E[m,]=0
* Covariance: cov(m,m;)=9; [uncorrelated components]

R.. * A resolution matrix

ElmRym;] = R; Elmim)]
=Ry ( E[m]JE[m] + cov(m;m,) )

= R;; 0; = R;; = tr R=number of resolved model parameters

Hutchinson’s method [Hutchinson, 1990]



ESTIMATING THE NUMBER OF RESOLVED PARAMETERS

m. * random test model vector
* Expectation: E[m,]=0
* Covariance: cov(mi,mj):éij [uncorrelated components]

R.. e A resolution matrix

E[m;R;m;] = R; E[m;m]
= R; ( E[m,JE[m/] + cov(m, m)) )

= R;; 0; = R;; = tr R = number of resolved model parameters

Very simple recipe:

* Choose a random test model m.
* Try to recover this model in a synthetic inversion [i.e. compute m_, = Rm].
* Multiply the result with mitself: m™ m_, = m"Rm.

* Average over some random realisations.

e The resolution matrix itself never has to be computed!
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3. Random probing for resolution analysis in tomography

Estimating position- and direction-dependent resolution lengths.



POINT-SPREAD FUNCTIONS

* Misfit ¢ in the vicinity of the optimal model m:

1. .
Y(m+odm) = y(m) + §OmTH(m) om
Hessian operator
Inverse posterior covariance [assuming Gaussian errors]

Column: point-spread function

H is too expensive to compute and store.

* But we can infer properties of H from its application to random test models.



RANDO

* Assume H is Gaussian [for simplicity
1
V2T o

H(x;y) =

M PROBING PRINCIPLE

and illustration]:

1 2
e 302 (TY)

h(y) = /H(.I';y)v(.z')d.r

3

random test model

random test model v(x)




RANDOM PROBING PRINCIPLE

 Assume H is Gaussian [for simplicity and illustration]:

H(xr;y) = \/%0—6_20% (z—y)?

h(y) = /H(.I';g)v(.z')d.r

3

random test model

random test model v(x) { smoothed version of v(x) [h=H-v]

25 30 35 5 10

* Length scales of h contain information on length scales of H.



RANDOM PROBING PRINCIPLE

* Auto-correlation of the output h [averaged over many realisations]:

average auto-correlations of h
[for 1, 2,3,5,10, 20, 50 samples]
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RANDOM PROBING PRINCIPLE

Auto-correlation of the output h [averaged over many realisations]:

Asymptotically: width of auto-correlation =v2 « width of H

average auto-correlations of h estimated with of H
[for1,2,3,5,10, 20, 50 samples] [for1, 2, 3,5, 10, 20, 50 samples]
T T T T T T T 0.45 T
Tor n ' 0.40} )
c X . s
0.8} 2 x
2 0.35} x X
(] x % x *
© x g ¥ X
0.6} o “ % % . ] y
3 o« by % X i
T c 0.30 X ] i
0.4} 5 ; b § ! i g
| : T
= 0.25} 5 o
0.2} £ < :
Q
0 0.20} )
0.2 L h L L ! L ! L L 0.15 L L L el . . T
8 6 -4 2 0 2 4 6 8 1 2 3 5 10 20 50

X number of random samples




PRELIMINARY CONCLUSIONS

1. Resolution and correlations

e The Hessian acts as a smoother of random functions.
* The smoothed functions carry information on resolution.
* Can be extracted with correlations.

2. Convergence

* Correlations themselves may require large sample sizes to converge.
* The width of the correlation converges extremely quickly.
» Useful resolution proxies may already be obtained with very few samples.



Synthetic full-waveform inversion in 2D



absolute velocities

2000

Synthetic inversion setup

(a) target model

SYNTHETIC EXAMPLE IN 2D

(b) initial model

(c) final model
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absolute velocities

velocitiy perturbations

Synthetic inversion setup

(a) target model

SYNTHETIC EXAMPLE IN 2D

(b) initial model

(c) final model
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SYNTHETIC EXAMPLE IN 2D

* Application of random test models to the Hessian via second-order adjoints

* Local auto-correlation of the output in different directions.



2000

1500

X, [km]

500

SYNTHETIC EXAMPLE IN 2D

Estimated width of the point-spread functions in x;-direction [resolution length].

resolution length in x,-direction

(a) 1 sample (b) 4 samples (c) 10 samples

x, [km] 1500 2000 0 500 , [km 1500 2000 0 500  [km] 1500 2000

Around 5-10 samples to converge.

Resolution is strongly heterogeneous.

[w] ()¢



SYNTHETIC EXAMPLE IN 2D

* Estimated width of the point-spread functions in x,-direction [resolution length].

resolution length in x,-direction

(a) 1 sample (b) 4 samples (c) 10 samples
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Real-data application



surface wave ray coverage

Fichtner & Villasenor, EPSL 2015

INVERSION SETUP

50°N

40°N

30°N

Technical summary:

Data

* 52 earthquakes, >1000 stations
* body waves, surface waves, ...

* periods: 10-150s

Forward modelling

* spectral elements
* 3D visco-elastic, anisotropic

Inversion

* initial model from previous European FWI
* adjoint-based CG

* invert for vy, vy, v,, p and source location/mechanism

sv/



S VELOCITY MODEL

isotropic S velocity

crustal velocities, v, [km/s] mantle velocities, v, [km/s]
25 3.0 35 40 40 4.2 4.4 4.6 4.8 5.0

Fichtner & Villasenor, EPSL 2015.



S VELOCITY MODEL

isotropic S velocity variations

030 s e 0.30
Av, [km/s]

Fichtner & Villasenor, EPSL 2015.



S VELOCITY MODEL

WEST
1SVv1

Fichtner & Villasenor, EPSL 2015.



50 km

300 km

POSITION- AND DIRECTION-DEPENDENT RESOLUTION LENGTHS

N-S direction E-W direction radial direction

100 200 300 100 200 300 20 40 60
30 M ' 1400 30 NN ‘ 1400 10 MY | 1 80

Ao [km] Mg, [km] A, [km]




Conclusions



Limitations:

1. Local analysis



Limitations:

1. Local analysis

Benefits:

1. Quantify spatial resolution and inter-parameter trade-offs.



Limitations:

1. Local analysis

Benefits:
1. Quantify spatial resolution and inter-parameter trade-offs.

2. Low computational costs

* around 5 Hessian-model applications
* equivalent to around 5 CG iterations
* much less than a synthetic inversion



Limitations:

1. Local analysis

Benefits:
1. Quantify spatial resolution and inter-parameter trade-offs.

2. Low computational costs

e around 5 Hessian-model applications
* equivalent to around 5 CG iterations
* much less than a synthetic inversion

3. Low algorithmic complexity

*  easy to implement without modifications of existing codes



Limitations:

1. Local analysis

Benefits:

=

Quantify spatial resolution and inter-parameter trade-offs.

2. Low computational costs

* around 5 Hessian-model applications
* equivalent to around 5 CG iterations
* much less than a synthetic inversion

3. Low algorithmic complexity

*  easy to implement without modifications of existing codes

4. Scalability

*  5random models sufficient in 1, 2 and 3 dimensions [empirical]
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1. Local analysis

Benefits:
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Quantify spatial resolution and inter-parameter trade-offs.

2. Low computational costs

* around 5 Hessian-model applications
* equivalent to around 5 CG iterations
* much less than a synthetic inversion

3. Low algorithmic complexity

*  easy to implement without modifications of existing codes

4. Scalability

* 5 random models sufficient in 1, 2 and 3 dimensions [empirical]

5. Applicability to any tomographic technique



Thanks for your attention!



