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"Solving	an	inverse	problem	means	to	describe	the	infinite-dimensional	
space	of	data-fi8ng	models."	

George	Backus	&	Freeman	Gilbert,	1968	



1.	Why	resolu-on	analysis	is	becoming	more	and	more	difficult	

A	simple	example	
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Dimension	N.	



R		mtrue=mest	

THE	RESOLUTION	MATRIX	

	
	
•  In	the	days	of	Backus	&	Gilbert:	 	N	=	O(102)		à	R	is	O(102)	[mes	larger	than	m.	

Resolu-on	matrix	How	
the	true	Earth	is	

smeared	into	an	image.		
Dimension	N	×	N.	

True	Earth	model	
Dimension	N.	

Es-mated	Earth	model	
Dimension	N.	



R		mtrue=mest	

THE	RESOLUTION	MATRIX	

	
	
•  In	the	days	of	Backus	&	Gilbert:	 	N	=	O(102)		à	R	is	O(102)	[mes	larger	than	m.	
•  Today: 	 	 	 	 	 	N	=	O(107)		à	R	is	O(107)	[mes	larger	than	m.	

Resolu-on	matrix	How	
the	true	Earth	is	

smeared	into	an	image.		
Dimension	N	×	N.	

True	Earth	model	
Dimension	N.	

Es-mated	Earth	model	
Dimension	N.	



R		mtrue=mest	

THE	RESOLUTION	MATRIX	

	
	
•  In	the	days	of	Backus	&	Gilbert:	 	N	=	O(102)		à	R	is	O(102)	[mes	larger	than	m.	
•  Today: 	 	 	 	 	 	N	=	O(107)		à	R	is	O(107)	[mes	larger	than	m.	
	
•  As	data	volumes	and	compu[ng	power	grow:	
	

Ø  We	can	construct	bigger	and	bigger	models	mest.	
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R		mtrue=mest	

THE	RESOLUTION	MATRIX	

The	problem:	
	
•  In	the	days	of	Backus	&	Gilbert:	 	N	=	O(102)		à	R	is	O(102)	[mes	larger	than	m.	
•  Today: 	 	 	 	 	 	N	=	O(107)		à	R	is	O(107)	[mes	larger	than	m.	
	
•  As	data	volumes	and	compu[ng	power	grow:	
	

Ø  We	can	construct	bigger	and	bigger	models	mest.	
Ø  We	loose	our	ability	to	quan[fy	the	quality	of	mest.	
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We	need	scalable	methods	to	infer	useful	aspects	of	resolu[on.	
	
	
	



We	need	scalable	methods	to	infer	useful	aspects	of	resolu[on.	
	
	
	
Objec-ves	of	this	Webinar:	
	
•  Describe	2	methods	to	quan[fy	resolu[on	when	R	is	too	expensive	to	compute	and	too	big	to	store.	

•  One	method	for	linear	problems,	and	one	for	(mildly)	nonlinear	problems.	

•  Both	based	on	random	probing	techniques.	



2.	Es-ma-ng	the	number	of	resolved	parameters	

tr	R	



mi 	 	 	 	 	 	� random	test	model	vector	
	 	 	 	 	 	� Expecta[on:	E[mi]=0	
	 	 	 	 	 	� Covariance:	cov(mi,mj)=δij		[uncorrelated	components]	
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Too	large	to	computer.	
Too	large	to	store.	

Too	large	to	comprehend	fully.	
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Hutchinson’s	method	[Hutchinson,	1990]	
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Very	simple	recipe:	
	
•  Choose	a	random	test	model	m.	
	

•  Try	to	recover	this	model	in	a	synthe[c	inversion	[i.e.	compute	mest	=	Rm].	
	

•  Mul[ply	the	result	with	m	itself:		mT	mest	=	mTRm.	
	

•  Average	over	some	random	realisa[ons.	

•  The	resolu[on	matrix	itself	never	has	to	be	computed!	

ESTIMATING	THE	NUMBER	OF	RESOLVED	PARAMETERS	
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3.	Random	probing	for	resolu-on	analysis	in	tomography	

Es[ma[ng	posi[on-	and	direc[on-dependent	resolu[on	lengths.	



POINT-SPREAD	FUNCTIONS	

•  Misfit	χ	in	the	vicinity	of	the	op[mal	model	m:		

Hessian	operator	
Inverse	posterior	covariance	[assuming	Gaussian	errors]	
Column:	point-spread	func-on	
	
H	is	too	expensive	to	compute	and	store.	

•  But	we	can	infer	proper[es	of	H	from	its	applica[on	to	random	test	models.	



RANDOM	PROBING	PRINCIPLE	

•  Assume	H	is	Gaussian	[for	simplicity	and	illustra[on]:		

random	test	model	

random	test	model	v(x)	random	test	model	v(x)	



•  Assume	H	is	Gaussian	[for	simplicity	and	illustra[on]:		

random	test	model	

•  	Length	scales	of	h	contain	informa[on	on	length	scales	of	H.	

RANDOM	PROBING	PRINCIPLE	

random	test	model	v(x)	 smoothed	version	of	v(x)	[h=H�v]	random	test	model	v(x)	



•  Auto-correla-on	of	the	output	h	[averaged	over	many	realisa[ons]:		
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average	auto-correla[ons	of	h		
[for	1,	2,	3,	5,	10,	20,	50	samples]	

es[mated	with	of	H		
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•  Auto-correla-on	of	the	output	h	[averaged	over	many	realisa[ons]:		

RANDOM	PROBING	PRINCIPLE	

average	auto-correla[ons	of	h		
[for	1,	2,	3,	5,	10,	20,	50	samples]	

es[mated	with	of	H		
[for	1,	2,	3,	5,	10,	20,	50	samples]	

•  Asympto-cally:	width	of	auto-correla[on	=	√2	�	width	of	H	



PRELIMINARY	CONCLUSIONS	

1.  Resolu[on	and	correla[ons	
	

•  The	Hessian	acts	as	a	smoother	of	random	func[ons.		
•  The	smoothed	func[ons	carry	informa[on	on	resolu-on.		
•  Can	be	extracted	with	correla-ons.		

	
	
2.  Convergence	
	

•  Correla[ons	themselves	may	require	large	sample	sizes	to	converge.	
•  The	width	of	the	correla[on	converges	extremely	quickly.	
Ø  Useful	resolu-on	proxies	may	already	be	obtained	with	very	few	samples.	

	



Synthe[c	full-waveform	inversion	in	2D	
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•  Applica[on	of	random	test	models	to	the	Hessian	via	second-order	adjoints	
	

•  Local	auto-correla[on	of	the	output	in	different	direc[ons.	
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•  Applica[on	of	random	test	models	to	the	Hessian	via	second-order	adjoints.	
	

•  Local	auto-correla[on	of	the	output	in	different	direc[ons.	
	

•  Es[mated	width	of	the	point-spread	func[ons	in	x1-direc-on	[resolu[on	length].	

•  Around	5-10	samples	to	converge.	
	

•  Resolu[on	is	strongly	heterogeneous.	

SYNTHETIC	EXAMPLE	IN	2D	



•  Applica[on	of	random	test	models	to	the	Hessian	[second-order	adjoints].	
	

•  Local	auto-correla[on	of	the	output	in	different	direc[ons.	
	

•  Es[mated	width	of	the	point-spread	func[ons	in	x2-direc-on	[resolu[on	length].	

SYNTHETIC	EXAMPLE	IN	2D	



Real-data	applica[on	



INVERSION	SETUP	

surface	wave	ray	coverage	

Technical	summary:	
	
Data	
	

•  52	earthquakes,	>1000	sta[ons	
•  body	waves,	surface	waves,	...	
	

•  periods:	10	–	150	s	
	
Forward	modelling	
	

•  spectral	elements	
•  3D	visco-elas-c,	anisotropic	

Inversion	
	

•  ini[al	model	from	previous	European	FWI	
•  adjoint-based	CG	
•  invert	for	vsh,	vsv,	vp,	ρ and	source	loca[on/mechanism

Fichtner	&	Villasenor,	EPSL	2015.	



S	VELOCITY	MODEL	
isotropic	S	velocity	

Fichtner	&	Villasenor,	EPSL	2015.	



S	VELOCITY	MODEL	

isotropic	S	velocity	varia[ons	

Fichtner	&	Villasenor,	EPSL	2015.	



S	VELOCITY	MODEL	

Fichtner	&	Villasenor,	EPSL	2015.	



POSITION-	AND	DIRECTION-DEPENDENT	RESOLUTION	LENGTHS	



Conclusions	
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•  around	5	Hessian-model	applica[ons	
•  equivalent	to	around	5	CG	itera[ons	
•  much	less	than	a	synthe[c	inversion	

	
3.  Low	algorithmic	complexity	
	

•  easy	to	implement	without	modifica[ons	of	exis[ng	codes	
	
4.  Scalability	
	

•  5	random	models	sufficient	in	1,	2	and	3	dimensions	[empirical]	
	
5.  Applicability	to	any	tomographic	technique	



Thanks	for	your	aven[on!	


