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Take home messages

The need to constrain greenhouse gas budgets inevitably
leads to the need for the solution of inverse problems

These inverse problems:

Require (intelligently) choosing among many
uncomfortable assumptions

Are becoming increasingly statistically sophisticated and
computationally demanding

Done carefully, can lead to fundamental insights with
management and policy implications
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_ Photo courtesy of Bartshé Miller
Tioga Pass, January 12 2015




IPCC AR5 WG1 SPM
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Source: CDIAC; NOAA-ESRL; Le Quéré et al 2014; Global Carbon Budget 2014

Global carbon dioxide budget

(gigatonnes of CO, per year)
2004-2013
Fossil fuel & Atmospheric
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and-use
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Perturbation of the global carbon cycle caused by anthropogenic activities,
averaged globally for the decade 2004—-2013 (GtCO,/yr)
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The future of natural carbon sinks

Uncertainty associated with the future
of natural carbon sinks is one of three
major sources of uncertainty in future
climate projections
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Source: Friedlingstein et al. (2006) showing projections

from coupled carbon and climate simulations for
several models.
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Paris Agreement

At the Paris climate conference (COP21) in December 2015, 195 countries
adopted the first-ever universal, legally binding global climate deal.

The agreement sets out a global action plan to put f
the world on track to avoid dangerous climate *
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Global Carbon Project 2013; Figure based on Kirschke et al. 2013, Nature Geoscience

METHANE BUDGET : 2000-09
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Home » News » Statements » U.S.-Canada Joint Statement on Climate, Energy, and Arctic Leadership

U.S.-CANADA JOINT STATEMENT ON CLIMATE, ENERGY, AND ARCTIC LEADERSHIP

Coordinated domestie climate action

Building on a history of working together to reduce air emissions, Canada and the U.S.,
commit to take action to reduce methane emissions from the oil and gas sector, the world’s
largest industrial methane source, in support of achieving our respective international
climate change commitments. To set us on an ambitious and achievable path, the leaders
commit to reduce methane emissions by 40-45 percent below 2012 levels by 2025 from the
oil and gas sector, and explore new opportunities for additional methane reductions. The
leaders also invite other countries to join the target or develop their own methane reduction
goal. To achieve this target, both countries commit to:



How do we know emissions?

Self reporting

Data: COIACIGCP
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How do we know emissions?
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How do we know emissions?

Cooperative Measurement Programs
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Source: Christoph Gerbig, MPI-BGC
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Take home messages

- The need to constrain greenhouse gas budgets inevitably
leads to the need for the solution of inverse problems

- These inverse problems:

- Require (intelligently) choosing among many
uncomfortable assumptions

- Are becoming increasingly statistically sophisticated and
computationally demanding

- Done carefully, can lead to fundamental insights with
management and policy implications
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Overall inverse problem ALL vary in space

and Eime

y = h(z)+sy +E,+E, +E,,

- Find z given y, where:

y.  atmospheric concentration observations
(some places, some times)

z.  surface fluxes (everywhere, all the time)
h(.). atmospheric transport

e. Mmeasurement error

g,. atmospheric transport model error

. . ‘representation” error (finite resolution in y)
e, ... aggregation” error (finite resolution in z)



Overall inverse problem ALL vary in space
and time

y= h(z)+gy +E,+E,, +E,,

Causation

Inference



Sample Flasks

Hudson Bay

TX

\/»\4

Mexico,

Observations, y

NL

oN ac :
N ol Ine o
| ME V' NS
Lo
()~
PA :

OH
PEEA Ay
s ﬂl' M =
o Jutie 20602
Septg
May 2004 e ct 2008
{ b 20604
'Sulfof 45 M :»EH‘ 2008 . .Zl:lllﬂ
{ i
exico Judy May 2007 pring
o 0 1w W AW 0 45E SE MSE
L3
Jan S005 Sept 2005
L
s *  Opevational She May 2008 o
*  Future Site June 2004
905




Atmospheric transport, 4(.)

15km ARW WRF, NAM—init —— NCAR/MMM Init: 12 UTC Thu 12 Mar 15
Fest: 18 h Valid: 06 UTC Fri 13 Mar 15 (00 MDT Fri 13 Mar 15)

Harizental wind speed at k=index = 39
Harizental wind vectors at k—index = 39
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Concentration

Time

Concentration

Time

How to inform
processes?

<t-=-Ltp=-FrfR-
hat is the in
prior flux model on budget?
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Mixed linear model ALL vary in space

and Eime

y = h(z)+sy +E,+E, +E,,

y = Hz + ¢ Linear forward model

High spatiotemporal resolution for z

z=Xp+&

y = HX/3 + H§ + & BIC for model selection
(space-time correlated

residuals)

E ~ N(O,Q) Stationary in space, nonstationary
in time, parametric model, not
sparse

£~ N(O,R) Independent, variable variance ReML for parameter
estimation
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Bigger, better, faster, more!
Michalak et al. (2004), Gourdji
et al. (2010), Chatterjee
(2012), Yadav (2013a,b),
Miller (2014a)

.| Biospheric CO, budgets:

éé‘“‘f Mueller et al. (2008),
®72008 | Gourdietal. (2008, 2012)

— Anthropogenic CO, budgets:

Concentration

Time

Concentration

Shiga et al. (2014),
Yadav et al. (in revision)

CH, and N,O budgets:
Miller et al. (2012, 2013,
Time 2014b)

Can provide more
> objective budget

estimates



Can evaluate
models’ process
representations

Can provide
process
information
directly at
target scales

Can confront
models with
independent flux
estimate




Increasing cost of inversions

Regional CO, P
Inversions over North |
America for one year
at 1° x 1°; 3-hourly
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Yadav et al. (BG 2010; Env. Mod. Soft. 2013)

Branch & bound algorithm for model selection
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Yadav and Michalak (GMD 2013)

Matrix multiplication & posterior covariances
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Both algorithms require O(n??) operations instead of O(n?) for direct solution.



Chatterjee et al. (JGR 2012, ACPD 2013)

Ensemble SRF approaches

GENnSRF GENnSRF GENnSRF
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ST o

Best Estimates

Uncertainties

Figure 4. TCI (top) flux estimates and (bottom) associated uncertainties aggregated to the monthly scale
for (a and b) GIM and (c-h) three different GEnSRF runs.

Features:

* No dynamical model

« Kalman smoother

« Heterogeneous (in space and time) observational network



Real-Time Large-Scale Parallel Intelligent
CO, Data Assimilation System
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Take home messages

- The need to constrain greenhouse gas budgets inevitably
leads to the need for the solution of inverse problems

- These inverse problems:

- Require (intelligently) choosing among many
uncomfortable assumptions

- Are becoming increasingly statistically sophisticated and
computationally demanding

- Done carefully, can lead to fundamental insights with
management and policy implications



Miller et al. (PNAS, 2013)

U.S. anthropogenic methane emissions

US budget
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Miller et al. (PNAS, 2013)

U.S. methane emissions

US budget U.S. anthropogenic
B | methane emissions are
™ 334 50% higher than EPA

estimates

22:1
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<\ S ¢ A CLIMATE ACTION PLAN
OO % STRATEGY TO
REDUCE METHANE

Methane emissions in
TX/ OK/KS are triple of
what inventories suggest,
and a quarter of total
U.S. emissions

EMISSIONS
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Estimated methane fluxes

)

3.4+0.7 TgC yr’

Contribution of spatial activity datasets to the estimated emissions
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METHAMNE BUDGET : 2000-09
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Ruminant source is nearly double
what inventories suggest.

Oil and gas emissions are 5x those
in EDGAR 4.2 for TX/OK/KS.
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Fang et al. (BG 2014)

Confronting model flux patterns with obs

ha= |

Savannas é-*nd
Shrublands

Desert and Xeric™ Y
Shrublands

Models’ flux patterns do
not explain observed
variability in atmospheric
observations for much of
the year, but they do
better during growing
season.




Land Uptake (GIClyr)

Fang et al. (GBC in revision)

Providing process information dlrectly at
target scales g
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Slide modified from: Yoichi Shiga

Solar Induced Fluorescence

SIF emitted during photosynthesis and is therefore
potentially a promising measure of GPP

Ky Solar

Fluorescence ¢ =
photon

Ky+Ki+ Ko+ Kp photon

=20z, e
Photochemistry

i Source: http://lwww.nasa.gov/press/goddard/2014/march/satellit
Source: Frankenberg, 2011 e-shows-high-productivity-from-us-corn-belt/#.U8QK4_IdV8G



Shiga et al. (in prep)

Differences at 1° x 1°, aggregated over
March to October

More net uptake

Less net uptake



Differences at 1° x 1°, aggregated over
March to October

Grasslands
Savannas

Shrublands
Deciduous
Broadleaf Forest

Needleleaf
Forest

Evergreen
Broadleaf Forest

Croplands

Informing inversions with SIF leads to
redistribution of carbon sink, with
increased sink in croplands and
reduced sink in needleleaf forests




Take home messages

The need to constrain greenhouse gas budgets inevitably
leads to the need for the solution of inverse problems

These inverse problems:

Require (intelligently) choosing among many
uncomfortable assumptions

Are becoming increasingly statistically sophisticated and
computationally demanding

Done carefully, can lead to fundamental insights with
management and policy implications
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