
STATISTICAL AND COMPUTATIONAL 
CHALLENGES OF CONSTRAINING 
GREENHOUSE GAS BUDGETS 

Anna M. Michalak 
Department of Global Ecology,  
Carnegie Institution for Science 
Department of Environmental Earth 
Systems Science, Stanford University 



Take home messages 

•  The need to constrain greenhouse gas budgets inevitably 
leads to the need for the solution of inverse problems 

•  These inverse problems: 
• Require (intelligently) choosing among many 

uncomfortable assumptions 
• Are becoming increasingly statistically sophisticated and 

computationally demanding 
• Done carefully, can lead to fundamental insights with 

management and policy implications 
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Tioga Pass, January 12 2015 
Photo courtesy of Bartshé Miller 
 



IPCC AR5 WG1 SPM 



Perturbation of the global carbon cycle caused by anthropogenic activities, 
averaged globally for the decade 2004–2013 (GtCO2/yr) 

Source: CDIAC; NOAA-ESRL; Le Quéré et al 2014; Global Carbon Budget 2014 



Source: Friedlingstein et al. (2006) showing projections 
from coupled carbon and climate simulations for 
several models. 

Uncertainty associated with the future 
of natural carbon sinks is one of three 
major sources of uncertainty in future 
climate projections 
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The future of natural carbon sinks 





Global Carbon Project 2013; Figure based on Kirschke et al. 2013, Nature Geoscience 





Self reporting 

Andres et al. (2014); Global Carbon Project 

How do we know emissions? 



How do we know emissions? 
Inventories 



!

How do we know emissions? Observations 

Fluxes (i.e. emissions / uptake) Concentrations 



Source: Christoph Gerbig, MPI-BGC 
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Overall inverse problem 

y = h z( )+!y +!h +!rep +!agg
•! Find z given y, where: 
y:  atmospheric concentration observations 
    (some places, some times) 
z:  surface fluxes (everywhere, all the time) 
h(.):  atmospheric transport 
!y:  measurement error 
!h:  atmospheric transport model error 
!rep:  “representation” error (finite resolution in y) 
!agg:  “aggregation” error (finite resolution in z) 

y = h z( )+!y +!h +!repepe +!agg

All vary in space  
and time 



Overall inverse problem 
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y z h(.) 
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Inference 
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Observations, y 



Atmospheric transport, h(.) 
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How to inform  
processes? 

What is the influence of  
prior flux model on budget? 
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Mixed linear model 

y = h z( )+!y +!h +!rep +!aggy = h z( )+!y +!h +!repepe +!agg

All vary in space  
and time 

z =X! +"

y =HX! +H" +#

y =Hz+!

! ~ N 0,Q( )

! ~ N 0,R( )

Stationary in space, nonstationary 
in time, parametric model, not 
sparse 
Independent, variable variance ReML for parameter 

estimation 

BIC for model selection 
(space-time correlated 
residuals) 

High spatiotemporal resolution for z z
Linear forward model 





Can provide more 
objective budget 
estimates 

Bigger, better, faster, more! 
Michalak et al. (2004), Gourdji 
et al. (2010), Chatterjee 
(2012), Yadav (2013a,b),  
Miller (2014a) 

Biospheric CO2 budgets: 
Mueller et al. (2008),  
Gourdji et al. (2008, 2012) 

CH4 and N2O budgets: 
Miller et al. (2012, 2013, 
2014b) 

Anthropogenic CO2 budgets: 
Shiga et al. (2014),  
Yadav et al. (in revision) 



Can provide 
process 
information 
directly at  
target scales 

Can confront 
models with 
independent flux 
estimate 

Can evaluate 
models’ process 
representations 



Regional CO2 
inversions over North 
America for one year 
at 1o x 1o; 3-hourly 

Source: Kim Mueller, U. Michigan 

Increasing cost of inversions 

y: ~105 
 
z: ~106 
 
X: ~102 

(H: ~105x106; Q: ~106x106) 



Branch & bound algorithm for model selection 
Yadav et al. (BG 2010; Env. Mod. Soft. 2013) 

k covariate yields 2k candidate models 



Matrix multiplication & posterior covariances 

y ~ N HX!,HQHT +R( ) ẑ ~ N !y, HTR"1H+Q"1( )
"1( )

Both algorithms require O(n2.5) operations instead of O(n3) for direct solution. 

Yadav and Michalak (GMD 2013) 



Ensemble SRF approaches 
Chatterjee et al. (JGR 2012, ACPD 2013) 

Features: 
•! No dynamical model 
•! Kalman smoother 
•! Heterogeneous (in space and time) observational network 



Real-Time Large-Scale Parallel Intelligent 
CO2 Data Assimilation System 
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U.S. anthropogenic methane emissions 
Miller et al. (PNAS, 2013) 



U.S. methane emissions 

Methane emissions in  
TX / OK / KS are triple of  
what inventories suggest,  
and a quarter of total  
U.S. emissions 

Miller et al. (PNAS, 2013) 

U.S. anthropogenic 
methane emissions are 
50% higher than EPA 
estimates 



Estimated methane fluxes 

Ruminant source is nearly double 
what inventories suggest. 
Oil and gas emissions are 5x those 
in EDGAR 4.2 for TX/OK/KS. 

3.4 ± 0.7 TgC yr!1  3.7 ± 2.0 TgC yr!1  

Miller et al. (PNAS, 2013) 



Confronting model flux patterns with obs 

# models 

Models’ flux patterns do 
not explain observed 
variability in atmospheric 
observations for much of 
the year, but they do 
better during growing 
season. 

Fang et al. (BG 2014) 



Providing process information directly at 
target scales 

Fang et al. (GBC in revision) 

Models explain flux 
patterns well when 
flux patterns are 
dominated by 
patterns in radiation  



Solar Induced Fluorescence 

SIF emitted during photosynthesis and is therefore 
potentially a promising measure of GPP 

Source: Frankenberg, 2011 
Source: http://www.nasa.gov/press/goddard/2014/march/satellit 
e-shows-high-productivity-from-us-corn-belt/#.U8QK4_ldV8G 

Slide modified from: Yoichi Shiga 



Differences at 1o x 1o, aggregated over 
March to October 

More net uptake 

Less net uptake 

Shiga et al. (in prep) 



Differences at 1o x 1o, aggregated over 
March to October 

Informing inversions with SIF leads to 
redistribution of carbon sink, with 
increased sink in croplands and 
reduced sink in needleleaf forests 

Shiga et al. (in prep) 
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