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Introduction

Forward propagation of parametric uncertainty

Forward model: y = f(x)
@ Local sensitivity analysis (SA) and error propagation

df

Ay = ——
y dxmo

Ax

This is ok for:

- small uncertainty
- low degree of non-linearity in f(z)

@ Non-probabilistic methods
o Fuzzy logic
o Evidence theory - Dempster-Shafer theory
e Interval math

@ Probabilistic methods - this is our focus
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Introduction

Probabilistic Forward UQ

Represent uncertain quantities using probability theory

@ Random sampling, MC, QMC

o Generate random samples {z°}Y ; from the PDF of z, p(z)
e Bin the corresponding {y’} to construct p(y)
o Not feasible for computationally expensive f(z)

- slow convergence of MC/QMC methods
= very large N required for reliable estimates

@ Build a cheap surrogate for f(x), then use MC
o Collocation - interpolants

o Regression - fitting
@ Galerkin methods

- Polynomial Chaos (PC)
- Intrusive and non-intrusive PC methods
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ForwardPC

Probabilistic Forward UQ & Polynomial Chaos

Representation of Random Variables

With y = f(x),  arandom variable, estimate the RV y

@ Can describe a RV in terms of its

e density, moments, characteristic function, or
e as a function on a probability space

@ Constraining the analysis to RVs with finite variance

= Represent RV as a spectral expansion in terms of orthogonal
functions of standard RVs

- Polynomial Chaos Expansion

@ Enables the use of available functional analysis methods for
forward UQ
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Polynomial Chaos Expansion (PCE)

@ Model uncertain quantities as random variables (RVs)
e Givenagerm &(w) = {&1, -+ ,&,} —asetofiid RVs
- where p(€) is uniquely determined by its moments

Any RVin L?(Q, &(¢), P) can be written as a PCE:

u(x, t,w) = f(x,t,&) ~ Zuk x, 1)V (&(w))

- ug(ax,t) are mode strengths
- Uy () are multivariate functions orthogonal w.r.t. p(£)
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ForwardPC
Orthogonality

By construction, the functions ¥y () are orthogonal with respect to

the density of &

w@t) = T — o (et A€) O pe(®) dt

@ Hermite polynomials with Gaussian basis

@ Legendre polynomials with Uniform basis, ...
@ Global versus Local PC methods
o Adaptive domain decomposition of the support of &
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PC Illustration: WH PCE for a Lognormal RV

Lognormal; WH PC order = 1

L ‘ ‘ ‘ ‘ éxact—P]jF — i
@ Wiener-Hermite PCE h PCE-PDF
constructed for a L2y
Lognormal RV t

@ PCE-sampled PDF
superposed on true

PDF 04 | /\
@ Order=1 02 ¢ j |

P
u = Z uk\Ilk(f)
k=0

= ug+u€
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PC Illustration: WH PCE for a Lognormal RV

Lognormal; WH PC order = 2

o Wiener-Hermite PCE | e Dr — |
constructed for a 12 ¢
Lognormal RV Ly
@ PCE-sampled PDF 5
superposed on true 06T /
PDF 04 r
@ Order= 2 021 \

P
u = Z uk\Ilk(f)
k=0

= wug+ué+us(e2-1)
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PC Illustration: WH PCE for a Lognormal RV

Lognormal; WH PC order = 3

L ‘ ‘ ‘ ‘ éxac—P]jF — i
o Wiener-Hermite PCE PCE.PDF
constructed for a 127
Lognormal RV t
o PCE-sampled PDF 08
p 0.6 [\

superposed on true |
PDF 04 | \
@ Order= 3 0271 —

P
u = Z uk\Ilk(f)
k=0

= ug+w€+ U2(§2 -1+ U3(53 — 3¢)
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PC Illustration: WH PCE for a Lognormal RV

Lognormal; WH PC order = 4

L ‘ ‘ ‘ ‘ éxac —P]jF — 4

o Wiener-Hermite PCE PCE PDF

constructed for a 2y

Lognormal RV tr
@ PCE-sampled PDF o5

superposed on true 06T / \

PDF 04
@ Order= 4 021 / N

7 : 2 ; 4 5 6

P
u = Z uk\Ilk(f)
k=0

= g+ ur€ +ug(E2 — 1) 4 uz(€3 — 36) + ug (et — 662 + 3)
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PC Illustration: WH PCE for a Lognormal RV

Lognormal; WH PC order = 5

L ‘ ‘ ‘ ‘ éxac -P]jF — ]

o Wiener-Hermite PCE PCE PDF

constructed for a 2

Lognormal RV t
@ PCE-sampled PDF 8 ~

superposed on true 061 [\

PDF 04 1 / \
@ Order= 5 027

0 0 1 2 ‘3 4 5 6

P
u = Z uk\Ilk(f)
k=0

= g+ ur€ +ug(E2 — 1) 4 uz(€3 — 36) + ug (et — 662 + 3)
+ u5 (€% — 1063 + 15¢)
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Random Fields

@ Arandom variable is a function on an event space (2
o No dependence on other coordinates -e.g. space or time

@ Arandom field is a function on a product space 2 x D
e eg seasurface temperature Tss(2,w), z = (x, t)

@ Itis a more complex object than a random variable
e A combination of an infinite number of random variables

@ In many physical systems, uncertain field quantities, described
by random fields:

e are smooth, i.e.
o they have an underlying low dimensional structure

due to large correlation length-scales
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Random Fields - KLE

@ Smooth random fields can be represented with a small no. of
stochastic degrees of freedom

@ Arandom field M (z,w) with
- amean function: p(z)
- a continuous covariance function:

C(x1,22) = ([M(z1,w) — p(21)][M (72, w) — p(z2)])
can be represented with the Karhunen-Loeve Expansion (KLE)

M(z,w) = pla) + Y v/ Aimi(w)di(x)
where =
e ); and ¢;(z) are the eigenvalues and eigenfunctions of the

covariance function C(+, -)
@ 7); are uncorrelated zero-mean unit-variance RVs

@ KLE = representation of random fields using PC
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RF Illustration: KL of 2D Gaussian Process

0=20.5

@ 2D Gaussian Process with covariance:
C(x1,72) = exp(—|lz1 — 22|[*/6?)
@ Realizations smoother as covariance length ¢ increases

Najm UQ in Computations



ForwardPC

RF Illustration: 2D KL - Modes for ¢




ForwardPC

RF Illustration: 2D KL - eigenvalue spectrum
5=0.1
4 terms 16 terms
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RF Illustration: 2D KL - eigenvalue spectrum

6=0.2
4 terms 16 terms

104 4

Eigenvalue Magnitude
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10° f| — 4§=0.1 E
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RF Illustration: 2D KL - eigenvalue spectrum

4 terms 16 terms
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Essential Use of PC in UQ

Strategy:
@ Represent model parameters/solution as random variables
@ Construct PCEs for uncertain parameters
@ Evaluate PCEs for model outputs

Advantages:
@ Computational efficiency
o Utility
o Moments: E(u) = ug, var(u) = Y1 u2(¥2), ...
o Global Sensitivities - fractional variances, Sobol indices
e Surrogate for forward model

Requirement:
@ RVsin L2, ie. with finite variance, on (2, &(&), P)
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Intrusive PC UQ: A direct non-sampling method

Given model equations: _

Express uncertain parameters/variables using PCEs

P P
u = Zuk\ﬂk; A= Z )\k\Ifk
k=0 k=0

Substitute in model equations; apply Galerkin projection

New set of equations: _

- withU = [uo,...,uP]T,A: [Ao,...,AP]T

Solving this deterministic system once provides the full
specification of uncertain model ouputs
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Laminar 2D Channel Flow with Uncertain Viscosity

Ikl

(Le Maitre et al., ]. Comput. Phys., 2001)

@ Incompressible flow
@ Viscosity PCE
- v = F 1k

@ Streamwise velocity

P
- V= E Vi\I/Z‘
=0

- Vp: mean
- v;: t-th order mode

P
- UQ:ZV? <‘I’z2> Vo
i=1

3 g
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Intrusive PC UQ Pros/Cons

Cons:
@ Reformulation of governing equations
@ New discretizations
@ New numerical solution method

- Consistency, Convergence, Stability
- Global vs. multi-element local PC constructions

@ New solvers and model codes
- Opportunities for automated code transformation
@ New preconditioners

Pros:
@ Tailored solvers can deliver superior performance

Najm UQ in Computations



ForwardPC
Non-intrusive PC UQ

@ Sampling-based

@ Relies on black-box utilization of the computational model
@ Evaluate projection integrals numerically

@ For any quantity of interest ¢(x,t; \) = 25:0 Or(x, 1)V (8)

@ Integrals can be evaluated using

@ A variety of (Quasi) Monte Carlo methods
- Slow convergence; ~ indep. of dimensionality

e Quadrature/Sparse-Quadrature methods
- Fast convergence; depends on dimensionality

Najm UQ in Computations



PC and High-Dimensionality

Dimensionality n of the PC basis: £ = {&1,...,&,}
@ n ~ number of uncertain parameters
@ P+1=(n+p)!/nlp! grows fast withn
Impacts:

@ Size of intrusive PC system
@ Hi-D projection integrals = large # non-intrusive samples
e Sparse quadrature methods

Clenshaw-Curtis sparse grid, Level = 3 Clenshaw-Curtis sparse grid, Level =5
. . ; .
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UQ in LES computations: turbulent bluff-body flame
with M. Khalil, G. Lacaze, & . Oefelein, Sandia Nat. Labs

@ CHy-Hs jet, air coflow, 3D flow -
@ Re=9500, LES subgrid modeling ghsina
@ 12 x 10% mesh cells, 1024 cores 1228
@ 3 days run time, 2 x 10° time steps [800
@ 3 uncertain parameters (C, Pry, Sct) 2%
e 2"¥-order PC, 25 sparse-quad. pts

Mean axial ine RMS axial velocit rline
1 T 1 T
Zos B Zos8p i ~
z e ES ms
Z 06k 4 Z 0.6 B
Boa4 Zoap B
g 3
202 | I Z02H | |
1107 ol 1 L "
5 10 15 5 10 15

Avial location (cm) Axial location (cm) J Oefelein & G. Lacaze, SNL

Main-Effect Sensitivity Indices
SNL Najm UQ in Computations 24/ 42
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UQ in Ocean Modeling - Gulf of Mexico
A. Alexanderian, |. Winokur, I. Sraj, O.M. Knio, Duke Univ.
A. Srinivasan, M. Iskandarani, Univ. Miami; ~ W.C. Thacker, NOAA

@ Hurricane Ivan, Sep. 2004
@ HYCOM ocean model (hycom.org)
@ Predicted Mixed Layer Depth (MLD)

@ Four uncertain parameters, i.i.d. U
- subgrid mixing & wind drag params

Latitude

-9 -85
Longitude

@ 385 sparse quadrature samples
(Alexanderian et al., Winokur et. al., Comput. Geosci., 2012, 2013)
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Bayes

Inverse UQ - Estimation of Uncertain Parameters

Forward UQ requires specification of uncertain inputs

Probabilistic setting

@ Require joint PDF on input space
@ Statistical inference - an inverse problem

Bayesian setting

@ Given Data: PDF on uncertain inputs can be estimated using
Bayes formula

- Bayesian Inference

@ Given Constraints: PDF on uncertain inputs can be estimated
using the Maximum Entropy principle

- MaxEnt Methods

Najm UQ in Computations



Bayes
Bayes formula for Parameter Inference

@ Data Model (fit model + noise model): y=f(\)*g(e)
@ Bayes Formula:

p(Ay) = p(Ay)p(y) = p(y[\)p(N)

Likelihood  Prior

A A
bl PO P
Posteri
osterior p(y)
Evidence

Prior: knowledge of A prior to data
Likelihood: forward model and measurement noise
Posterior: combines information from prior and data

Evidence: normalizing constant for present context
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Bayes
The Prior

@ Prior p(\) comes from

o Physical constraints
o Prior data
@ Prior knowledge

@ The prior can be uninformative
@ It can be chosen to impose regularization

@ Unknown aspects of the prior can be added to the rest of the
parameters as hyperparameters

@ The choice of prior can be crucial when there is little
information in the data relative to the number of degrees of
freedom in the inference problem

@ When there is sufficient information in the data, the data can
overrule the prior

Najm UQ in Computations



Bayes

Construction of the Likelihood p(y|\)

Where does probability enter the mapping A — y in p(y|A)?
Through a presumed error model:

Example:
e Model:

Ym = g(A)
e Data: y
o Error between data and model prediction: ¢

y = g(\)+e

Model this error as a random variable
Example

e Error is due to instrument measurement noise
e Instrument has Gaussian errors, with no bias

e~ N(0,0%)

Najm UQ in Computations



Bayes

Construction of the Likelihood p(y|\) - contd

For any given ), this implies

y|)"0 ~ N(g()‘)a 02)

EE g<A>>2>

or

202

1
A o) =
p(ylA; o) NP
Given N measurements (y1, ..., yn), and presuming independent

identically distributed (iid) noise

yi = g\ +e
e ~ N(0,0%)

L()‘):p(yl?'-'ayN’)VO—) = p(yip‘va)

=

1

-.
Il
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Likelihood Modeling

@ This is frequently the core modeling challenge

o Error model: a statistical model for the discrepancy between
the forward model and the data
e composition of the error model with the forward model

@ Error model composed of discrepancy between

- data and the truth - (data error)
- model prediction and the truth - (model error)

@ Mean bias and correlated/uncorrelated noise structure
@ Hierarchical Bayes modeling, and dependence trees

p(¢,0|D) = p(¢|0, D)p(0|D)

@ Choice of observable - constraint on Quantity of Interest?

Najm UQ in Computations



Exploring the Posterior

@ Given any sample A, the un-normalized posterior probability
can be easily computed

P(Aly) o< p(y[A)p(A)

@ Explore posterior w/ Markov Chain Monte Carlo (MCMC)
- Metropolis-Hastings algorithm:

e Random walk with proposal PDF & rejection rules

- Computationally intensive, O(10°) samples
- Each sample: evaluation of the forward model

e Surrogate models

@ Evaluate moments/marginals from the MCMC statistics

Najm UQ in Computations



Bayes

Bayesian inference illustration: noise{ =- uncertainty

. \‘\.\z\\; 45 105 0 g&c) 1152 5
* gy x bad
o data:y =222 —3x +5+e¢ us
o ¢~ N(0,02),0 ={0.1,0.5,1.0} I R
@ Fitmodely = az? + bx + ¢ y -
AR
Marginal posterior density p(a, c): 5 Qi )
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Bayes

Bayesian inference - High Dimensionality Challenge

@ Judgement on local/global posterior peaks is difficult
o Multiple chains; Tempering

@ Choosing a good starting point is very important
e Aninitial optimization strategy is useful, albeit not trivial

@ Choosing good MCMC proposals, and attaining good mixing
o Likelihood-informed
- Markov jump in those dimensions informed by data
Sample from prior in complement of dimensions
- Adaptive proposal learning from MCMC samples
Log-Posterior Hessian = local Gaussian approx.
Adaptive, Geometric, Langevin MCMC

o Dimension independent
- Proposal design: good MCMC performance in hiD

o Literature: A. Stuart, M. Girolami, K. Law, T. Cui, Y. Marzouk
(Law 2014; Cui et al., 2014,2015; Cotter et al., 2013)
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Bayesian inference - Model Error Challenge

@ Quantifying model error, as distinct from data noise, is
important for assessing confidence in model validity

@ Conventional statistical methods for representation of model
error have shortcomings when applied to physical models

@ New methods are under-development for model error:
- physical constraints are satisfied
- feasible disambiguation of model-error/data-noise
- calibrated model error terms adequately impact all
model outputs of interest
- uncertainties in predictions from calibrated model
reflect the range of discrepancy from the truth

@ Embed model error in submodel components where
approximations exist
(K. Sargsyan et al., 2015)

Najm UQ in Computations



Bayes

Quadratic-fit - Classical Bayesian likelihood

8 8
7 7 * ® o,
6 6 o
5 5
4 4
3 3
2 2
1 N =20 | N=5
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
@ With additional data, .
predictive uncertainty ;
around the wrong modelis s :
indefinitely reducible 5
4
@ Predictive uncertainty not s
indicative of discrepancy 2l 900 N
from truth '
-1.0 -0.5 0.0 0.5 1.0
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Bayes

Quadratic-fit - ModErr - MargGauss

N oW R O N ®

™ 8
N=20 | | ., N =50
. o S \l\\_.\ 5 ¢ o \
- . C e
SN s N
R — R =crr— N
= 1o petatiomtponmo v = 1o pabettomsponeno vy A
1 pushed-forward posterior: model error term Eq[Ve(/]] 1 - pushed-forward posterior: model error term &, V(]
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 05 1.0
. e 8
@ With additional data, , N =20
predictive uncertainty due
to data noise is reducible 5 :
@ Predictive uncertainty due to * TN
. . 3 R
model error is not reducible |~z N

\ET]

— Mean pushed-forward posterior B ]
= 1o pushed-forward posterior Ve[

1 pushed-forward posterior: model error term Eq[Ve(]]

-1.0 -0.5 0.0
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Bayes

Quadratic-fit - ModErr - MargGauss

103
&--o Pushed-forward variance Veg|f]
102 o--o Model error Eq[V[f]]
. m-a Data error Vo [E¢[f]]
10
$-..
0 i, O
) 10 * ¥~~-~j-——q---._-—-f--ir--i---—--—' --a
o s
8 107 po
a LN .
> 102 * e -
o ‘..
103 T
10 T
T
10° L > Z 5
10 10 103 10 10 10°
N

Calibrating a quadratic f(x) w.rt. g(x) = 6 + 22 4+ 0.5(x + 1)3°
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Model Evidence and Complexity

Let M = {M;, M>, ...} be aset of models of interest

@ Parameter estimation from data is conditioned on the model
p(D|0, My )m (0| M)
p 0 D7 Mk =
1D, My) p(DIMy)

Evidence (marginal likelihood) for M

p(DIM;) = / p(D|0, My)(6M)d0

Model evidence is useful for model selection

@ Choose model with maximum evidence
@ Compromise between fitting data and model complexity

o Optimal complexity - Occams razor principle
e Avoid overfitting

Najm UQ in Computations



Too much model complexity leads to overfitting

Datamodel: :=1,...,N Order =1
-3.5
3 2 — Fitted model
yi = 7 +a; -6+ -4.0r{ e o Noisy data
€ ~ N(O, S) s --- True function ,"
Bayesian regression with Legendre -5 > -
PCE fit models, order 1-10 55 /,/' 3
P -6. S "?"'./' RIS ) ..—"x
p— / ¢
Ym = ch¢k($’) =5 =65 00 05 10
Pt ; : : ; ;

Uniform priors 7w(ck), k= 0,..., P Fitted model pushed-forward
posterior versus the data
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Too much model complexity leads to overfitting

Datamodel: :=1,...,N Order =2
-3.5
3 2 — Fitted model
yi = itz —6+¢€ -4.0{ e e Noisy data
€ ~ N(O, S) as === True function i
Bayesian regression with Legendre -5. //
PCE fit models, order 1-10 5 /.
P -6. '\.\.\:(
Ym = Y _ cxti(x) o
k=0 ~ =1.0 -0.5 0.0 0.5 1.0

Uniform priors 7w(ck), k= 0,..., P Fitted model pushed-forward
posterior versus the data
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Too much model complexity leads to overfitting

Datamodel: :=1,...,N Order = 3
-3.5
. 3 2 — Fitted model
yi = xj i —6+¢ -4.0r/ e o Noisy data

€ ~ N(O,S) [ --- True function

-4,
Bayesian regression with Legendre - /
PCE fit models, order 1-10 55 /

(]
/
[ ] Y 4
- ——— =z

o

P
Ym = ki () s
k=0

-1.0 -0.5 0.0 0.5 1.0

Uniform priors 7w(ck), k= 0,..., P Fitted model pushed-forward
posterior versus the data

Najm UQ in Computations



Too much model complexity leads to overfitting

Datamodel: :=1,...,N Order = 4
-3.5
. 3 2 — Fitted model
yi = a2 +xi —6+¢ -4.0r| e e Noisy data

€ ~ N(O,S) [ --- True function

-4,
Bayesian regression with Legendre - /
PCE fit models, order 1-10 55 /

o
¢

. o

«--" N ——.

u

P
Ym = ki () 65
k=0

-1.0 -0.5 0.0 0.5 1.0

Uniform priors 7w(ck), k= 0,..., P Fitted model pushed-forward
posterior versus the data
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Too much model complexity leads to overfitting

Datamodel: :=1,...,N Order=5
-3.5
3 2 — Fitted model
yi = itz —6+e -4.0/| e e Noisy data
€ ~ N(O, 3) is === True function
Bayesian regression with Legendre -5 /
PCE fit models, order 1-10 55 L
P -6. 'A“"". A
Ym = ki () s
k=0 = =1.0 -0.5 0.0 0.5 1.0

Uniform priors 7w(ck), k= 0,..., P Fitted model pushed-forward
posterior versus the data
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Too much model complexity leads to overfitting

Datamodel: :=1,...,N Order=6
-3.5
3 2 — Fitted model
yi = itz —6+e 4.0 e o Nloisy data
€ ~ N(O, 3) is === True function
Bayesian regression with Legendre -5 f
PCE fit models, order 1-10 55 /
P -6. L% -._—»-"/
Ym = ki () s
k=0 = =1.0 -0.5 0.0 0.5 1.0

Uniform priors 7w(ck), k= 0,..., P Fitted model pushed-forward
posterior versus the data
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Too much model complexity leads to overfitting

Datamodel: :=1,...,N Order=7
-3.5
. 3 2 — Fitted model
yi = 7 +a; -6+ -4.0r{ e o Noisy data

€ ~ N(O, 3) L True function g
Bayesian regression with Legendre -5 /
PCE fit models, order 1-10 55 //

P _6_ L A ‘.'--Jﬁ
e
Um = Y _ crtr() s
k=0 = =1.0 -0.5 0.0 0.5 1.0

Uniform priors 7w(ck), k= 0,..., P Fitted model pushed-forward
posterior versus the data
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Too much model complexity leads to overfitting

Datamodel: :=1,...,N Order = 8
-3.5
3 2 — Fitted model
yi = itz —6+e -4.0/| e e Noisy data
€ ~ N(O, 3) L True function /:'
Bayesian regression with Legendre -5 l
PCE fit models, order 1-10 55 j/
; [ e e O 1/
P 6. g
Ym = ki () s
k=0 = =1.0 -0.5 0.0 0.5 1.0

Uniform priors 7w(ck), k= 0,..., P Fitted model pushed-forward
posterior versus the data
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Too much model complexity leads to overfitting

Datamodel: :=1,...,N Order =9
-3.5
3 2 — Fitted model
Yyi = zi+r —6+6 -4.0r| @ o Noisy data
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posterior versus the data
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Too much model complexity leads to overfitting
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Bayes
Evidence and Cross-Validation Error

@ Model evidence peaks at the N
true polynomial order of 3 i N
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equally minimal at order 3

@ Cross validation error is \( \\\
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@ Models with optimal .
complexity are robust to / \ /
cross validation \ s
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Order

Cross validation error and
model evidence versus order

Najm UQ in Computations



Closure
Closure

@ Probabilistic UQ framework
o Polynomial Chaos representation of random variables

@ Forward UQ
e Intrusive and non-intrusive forward PC UQ methods

@ Inverse UQ
o Parameter estimation via Bayesian inference
e Model error
@ Model complexity
@ Challenges
o High dimensionality
Intrusive Galerkin stability
Nonlinearity
Time dynamics
Model error
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