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Motivation 
• We are in the midst of a revolution in science and engineering 

•  Impact of modeling and simulation are dramatically increasing in 
geophysical systems because: 
–  Traditional experiments for the understanding of systems are usually 

impossible 
–  Large physical scales and long time spans make simulation most 

appealing 
–  Ability to optimize and perturb our designs in unique ways 
–  Stunning reduction in cost of computing resources 

How can simulation analysts and customers who use simulations 
determine if the simulation results can be trusted? 
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Background 
• What elements determine if suppliers and customers can 

trust simulation results? 
–  Education and training of the computational analysts 
–  Development and implementation of quality control processes 

for simulation activities, e.g., simulation governance 
–  Use of verification and validation procedures 
–  Estimation of the uncertainties that could impact the results 

• There are different types of verification and validation: 
–  System V&V 
–  Software V&V 
–  Simulation V&V 

• All have similar concepts: 
–  Verification: Am I building the product correctly? 
–  Validation: Am I building the correct product? 

We will focus on simulation V&V and predictive capability 
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Conceptual Framework of Simulation 
Verification, Validation and Predictive Capability 

• Verification and validation are built on the philosophy of 
skepticism 
–  The fundamental procedure of V&V is testing 
–  “Show me the evidence that the software and the mathematical 

models are working properly.” 

• Predictive capability is foretelling the state of the system for 
conditions where no experimental data are available: 
–  Predictive capability is built on: 

•  Fidelity of the physics modeling embodied in the mathematical model 
•  Identification and estimation of all sources of uncertainty for the 

system conditions of interest 
–  The procedure is built on uncertainty quantification (UQ) using 

non-deterministic simulation 

Predictive capability is the primary reason for             
conducting simulation 
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Formal Definition of Verification 
(U.S. DoD, AIAA, ASME, ASCE) 

Verification: The process of determining that a computational model 
accurately represents the underlying mathematical  model and its 
solution. 

Verification 
assesses 
software 
reliability and 
numerical 
accuracy 
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Two Types of Verification 
First: Code Verification 

• Code verification activities are directed toward: 
–  Finding and removing mistakes in the source code 
–  Finding and removing errors in the numerical algorithms 
Primary Result: determination of the observed order of numerical 

convergence in space and time  

• Responsibility for code verification activities: 
–  Primary: software developers (either commercial or developers 

within an organization) 
–  Secondary: simulation analysts (customers of software 

developers) and customers of the simulation 

• Status of code verification: 
–  Commercial software: very few (if any) document the observed 

order of accuracy of their solutions 
–  Organizational software: very few organizations document the 

observed order of accuracy of their solutions 
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Two Types of Verification 
Second: Solution Verification 

• Solution verification activities are directed toward: 
–  Assuring the correctness of input and output data for each 

problem of interest 
–  Estimating the numerical solution error 

• Sources of numerical solution error: 
–  Round-off error 
–  Iterative error 
–  Discretization error 
–  Statistical sampling error 
–  Response surface error 

       Primary Goal: Estimation of the total numerical solution error         
in the system response quantities (SRQs) of interest 
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Solution Verification (continued) 
• Classification of discretization error estimators: 

–  Type 1: DE estimators based on higher-order estimates of the exact 
solution to the PDEs (Richardson extrapolation, order refinement 
methods, and finite element recovery methods) 

–  Type 2: DE estimator based on estimating the discretization 
residual of the PDEs (DE transport equation method, finite element 
residual methods, and adjoint methods) 

• Responsibility for solution verification: 
–  Primary: simulation analysts 
–  Secondary: software developers (for implementing estimation 

tools) and customers of the simulation 

• Status of solution verification: 
–  Very few analysts estimate solution error 
–  Very few managers/decision makers ask about solution verification 

“But our results agree with the experimental data.”      
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Formal Definition of Validation 
(U.S. DoD, AIAA, ASME, ASCE) 

Validation: The process of determining the degree to which a model 
is an accurate representation of the real world from the perspective 
of the intended uses of the model. 

Validation 
deals with 
physics 
modeling 
fidelity 

(Ref: ASME Guide, 2006) 
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Goals and Tools of Validation 
• Tactical goals of validation: 

–  Quantification of the effects of mathematical modeling assumptions 
and approximations by comparison of simulation results with 
experimental measurements, i.e., quantification of model form 
uncertainty 

–  Quantification of model form uncertain (distinct from parametric 
uncertainty) 

• Strategic goals of validation: 
–  Improve mathematical modeling to increase predictive capability 
–  Improve the separation of model form uncertainty from input 

parameter uncertainty 

• What are the primary tools of validation? 
–  High quality validation experiments 
–  Validation metrics: mathematical operators to quantify the 

difference between simulation and experimental outcomes 
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Validation Experiment Hierarchy 
for Engineering Systems 

(Ref: AIAA Guide, 1998) 
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Model Calibration 

Calibration: (AIAA and ASME definition) The process of adjusting 
physical modeling parameters in the computational model to 
improve agreement with experimental data 
•  Also known as: parameter estimation, model tuning, model updating 
•  Calibration is commonly conducted before formal validation activities 
•  Ex: Calibration of erosion parameters, calibration of subsurface porosity 

and permeability, and calibration of chemical and biological parameters 

Approaches to model calibration: 

•  Frequentist (classical) approaches 

• Bayesian updating: 

- Parameters are considered as probability distributions 

- Probability distributions represent belief likelihoods 

- Parameters are updated using Bayes formula when new 
experimental data become available 
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Where Do We Stand: 
Validation Activities 

• Common approach to validation is actually model calibration: 
–  Parameters in the model, either scalars or probability distributions, 

are adjusted to improve agreement with experimental data 
–  Simulations are usually reliable when the models are used for very 

similar systems and conditions for which the models are calibrated 
–  Weaknesses in the models are not uncovered, but masked, when 

model calibration becomes dominant 

• To improve confidence in our simulations, validation should: 
–  Improve the separation of calibration and validation activities 
–  Emphasize the assessment of simulation accuracy by using blind-

predictions of experimental data 
–  Improve cooperation and synergism between experimentalists and 

computational analysts 
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Predictive Capability: 
Reliance on Non-Deterministic Simulations 

• Key sources of uncertainty: 
–  Identification of environments and scenarios that the system could experience 
–  Input uncertainties in the system and in the surroundings 
–  Model form uncertainty, i.e., uncertainty in  
–  Numerical errors in 

 

y = f (x)

x = x1, x2 , xm{ }
y = y1, y2 , yn{ }

 f (x)

 y



          16 

Types of Uncertainties 

Aleatory uncertainty: uncertainty due to inherent randomness 
–  Also referred to as variability and stochastic uncertainty 

Aleatory uncertainty is a characteristic of the system of interest 

•  Examples: 
–  Variability weather conditions, e.g., wind speed, rain fall, temperature 
–  Variability in properties of natural and manmade materials 
–  Variability in excitation, e.g., frequency and amplitude of earthquakes 

Epistemic uncertainty: uncertainty due to lack of knowledge 
–  Also referred to reducible uncertainty, knowledge uncertainty, and 

subjective uncertainty 
Epistemic uncertainty is a characteristic of our knowledge of the system 

•  Examples: 
–  Poor understanding of physical phenomena, e.g., underground transport 
–  Poor understanding of accident scenarios and event/failure trees 
–  Model form uncertainty, e.g., failure of large man-made structures 

(Ref: Kaplan and Garrick, 1981; Morgan and Henrion, 1990; Ayyub and Klir, 2006) 
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Characterization of Epistemic Uncertainty 
A purely epistemic uncertainty 

is characterized by an interval (a,b) 
A mixture of epistemic and aleatory 

uncertainty is characterized by a p-box 

This mathematical structure is 
referred to as an imprecise probability. 
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Prediction Far From the Validation/Calibration 
Domain: Extrapolation 

•  Extrapolation can   
occur in terms of: 

–  Input parameters 
–  Higher levels in the 

validation hierarchy 

•  Large extrapolations 
commonly involve 
large changes in 
physics coupling 

•  Large extrapolations 
should be based on 
physics inference, not 
statistical inference 

(Ref: Oberkampf and Roy, 2010) 
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Validation (Model Accuracy) Assessment, 
Calibration and Prediction 

(Ref: Oberkampf and Barone, 2006) 
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Contrasting Validation, 
Prediction, and Model Adequacy 

(Ref: Oberkampf and Trucano, 2008) 
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Example of a Probability-Box 
with Various Sources of Uncertainty 

• Prediction of thrust from 
a small rocket motor 

• Uncertain inputs to the 
mathematical model: 

–  Total pressure in the 
motor ~ normal 
distribution 

–  Effect of boundary layer 
transition ~ interval-
valued effect on the 
expansion ratio of the 
nozzle 

• Epistemic uncertainties 
in the simulation are: 

–  Model form uncertainty 
–  Numerical solution 

error 

(Roy and Balch, 2012) 
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Example Showing Total Uncertainty 
Using Alternate Competing Models 

Predicted Track of 
Hurricane Emily 2005 

(Ref: Green, 2007) 
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Closing Remarks 
• Code and solution verification must be improved to ensure we 

are building on a solid foundation for simulation 

• Validation is focused on assessing the accuracy of 
mathematical models vis-à-vis experimental measurements 

•  In geosciences mathematical models are dominated by 
calibration procedures for model parameters 

• Predictive capability: 
–  Is focused on what we have never seen before 
–  When we make predictions far from our validation/calibration 

database, we should concentrate on capturing total uncertainty 

Quote from William H. Press (author of Numerical Recipes): 

“Simulation and mathematical modeling will power the 21st 
Century the way steam powered the 19th.” 
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