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Motivation

* We are in the midst of a revolution in science and engineering

* Impact of modeling and simulation are dramatically increasing in
geophysical systems because:
— Traditional experiments for the understanding of systems are usually
iImpossible

— Large physical scales and long time spans make simulation most
appealing

— Ability to optimize and perturb our designs in unique ways
— Stunning reduction in cost of computing resources

How can simulation analysts and customers who use simulations
determine if the simulation results can be trusted?



Background

* What elements determine if suppliers and customers can
trust simulation results?

— Education and training of the computational analysts

— Development and implementation of quality control processes
for simulation activities, e.g., simulation governance

— Use of verification and validation procedures
— Estimation of the uncertainties that could impact the results

* There are different types of verification and validation:
— System V&V
— Software V&V
— Simulation V&V

* All have similar concepts:
— Verification: Am | building the product correctly?
— Validation: Am | building the correct product?

We will focus on simulation V&V and predictive capability



Conceptual Framework of Simulation
Verification, Validation and Predictive Capability

* Verification and validation are built on the philosophy of
skepticism
— The fundamental procedure of V&V is testing

— “Show me the evidence that the software and the mathematical
models are working properly.”

* Predictive capability is foretelling the state of the system for
conditions where no experimental data are available:
— Predictive capability is built on:

» Fidelity of the physics modeling embodied in the mathematical model

 |dentification and estimation of all sources of uncertainty for the
system conditions of interest

— The procedure is built on uncertainty quantification (UQ) using
non-deterministic simulation

Predictive capability is the primary reason for
conducting simulation



Formal Definition of Verification
(U.S. DoD, AIAA, ASME, ASCE)

Verification: The process of determining that a computational model
accurately represents the underlying mathematical model and its

solution.
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Two Types of Verification
First: Code Verification

* Code verification activities are directed toward:
— Finding and removing mistakes in the source code
— Finding and removing errors in the numerical algorithms

Primary Result: determination of the observed order of numerical
convergence in space and time

* Responsibility for code verification activities:

— Primary: software developers (either commercial or developers
within an organization)

— Secondary: simulation analysts (customers of software
developers) and customers of the simulation

e Status of code verification:

— Commercial software: very few (if any) document the observed
order of accuracy of their solutions

— Organizational software: very few organizations document the
observed order of accuracy of their solutions



Two Types of Verification
Second: Solution Verification

e Solution verification activities are directed toward:

— Assuring the correctness of input and output data for each
problem of interest

— Estimating the numerical solution error

* Sources of numerical solution error:
— Round-off error
— lterative error
— Discretization error
— Statistical sampling error
— Response surface error

Primary Goal: Estimation of the total numerical solution error
in the system response quantities (SRQs) of interest



Solution Verification (continued)

e Classification of discretization error estimators:

— Type 1: DE estimators based on higher-order estimates of the exact
solution to the PDEs (Richardson extrapolation, order refinement
methods, and finite element recovery methods)

— Type 2: DE estimator based on estimating the discretization
residual of the PDEs (DE transport equation method, finite element
residual methods, and adjoint methods)

* Responsibility for solution verification:
— Primary: simulation analysts

— Secondary: software developers (for implementing estimation
tools) and customers of the simulation

e Status of solution verification:
— Very few analysts estimate solution error
— Very few managers/decision makers ask about solution verification

“But our results agree with the experimental data.”



Formal Definition of Validation
(U.S. DoD, AIAA, ASME, ASCE)

Validation: The process of determining the degree to which a model

IS an accurate representation of the real world from the perspective
of the intended uses of the model.

Validation
deals with
physics
modeling
fidelity

(Intended Use)
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Modeling Activities: Experimental Activities:
- Model development - Experiment design
- Verification

- Initial and boundary conditions
- Response measurements
- Uncertainty assessment

- Predictive calculations
- Uncertainty assessment

4>( Validation )4—

( Application )

(Ref: ASME Guide, 2006)
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Goals and Tools of Validation

* Tactical goals of validation:

— Quantification of the effects of mathematical modeling assumptions
and approximations by comparison of simulation results with

experimental measurements, i.e., quantification of model form
uncertainty

— Quantification of model form uncertain (distinct from parametric
uncertainty)
* Strategic goals of validation:

— Improve mathematical modeling to increase predictive capability

— Improve the separation of model form uncertainty from input
parameter uncertainty

* What are the primary tools of validation?
— High quality validation experiments

— Validation metrics: mathematical operators to quantify the
difference between simulation and experimental outcomes
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Validation Experiment Hierarchy
for Engineering Systems
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Model Calibration

Calibration: (AIAA and ASME definition) The process of adjusting

physical modeling parameters in the computational model to
Improve agreement with experimental data

* Also known as: parameter estimation, model tuning, model updating
e Calibration is commonly conducted before formal validation activities

e Ex: Calibration of erosion parameters, calibration of subsurface porosity
and permeability, and calibration of chemical and biological parameters

Approaches to model calibration:
* Frequentist (classical) approaches
* Bayesian updating:
—Parameters are considered as probability distributions
—Probability distributions represent belief likelihoods

—Parameters are updated using Bayes formula when new
experimental data become available

13



Where Do We Stand:
Validation Activities

e Common approach to validation is actually model calibration:

— Parameters in the model, either scalars or probability distributions,
are adjusted to improve agreement with experimental data

— Simulations are usually reliable when the models are used for very
similar systems and conditions for which the models are calibrated

— Weaknesses in the models are not uncovered, but masked, when
model calibration becomes dominant

* To improve confidence in our simulations, validation should:
— Improve the separation of calibration and validation activities

— Emphasize the assessment of simulation accuracy by using blind-
predictions of experimental data

— Improve cooperation and synergism between experimentalists and
computational analysts
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Predictive Capability:
Relilance on Non-Deterministic Simulations

* System Excitation

Environment - _
of interest V= f(X)
X = {Xl ,X2 ) X " }
Scenario 1 Scenario2 | = = = | Scenario M y = { yl , y2 R yn }
/ System response
UNCERTAIN INPUT QUANTITIES quantities of interest
* Geometry > f (x )
* Initial Conditions . — P>
* Physical Modeling Parameters —b Model given by }/
Surroundings: pr— system of PDE’s i
* Boundary Conditions — and sub-models —
—->
X

* Key sources of uncertainty:
— ldentification of environments and scenarios that the system could experience
— Input uncertainties in the system and in the surroundings
— Model form uncertainty, i.e., uncertainty in f(x)
— Numerical errors in y 15



Types of Uncertainties

Aleatory uncertainty: uncertainty due to inherent randomness
— Also referred to as variability and stochastic uncertainty
Aleatory uncertainty is a characteristic of the system of interest
* Examples:

— Variability weather conditions, e.g., wind speed, rain fall, temperature
— Variability in properties of natural and manmade materials
— Variability in excitation, e.g., frequency and amplitude of earthquakes

Epistemic uncertainty: uncertainty due to lack of knowledge

— Also referred to reducible uncertainty, knowledge uncertainty, and
subjective uncertainty

Epistemic uncertainty is a characteristic of our knowledge of the system

* Examples:

— Poor understanding of physical phenomena, e.g., underground transport
— Poor understanding of accident scenarios and event/failure trees
— Model form uncertainty, e.g., failure of large man-made structures

(Ref: Kaplan and Garrick, 1981; Morgan and Henrion, 1990; Ayyub and Klir, 2006) y



Cumulative Probability

Characterization of Epistemic Uncertainty
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Prediction Far From the Validation/Calibration
Domain: Extrapolation

* Extrapolation can
occur in terms of:
— Input parameters

— Higher levels in the
validation hierarchy

* Large extrapolations
commonly involve
large changes in
physics coupling

* Large extrapolations
should be based on
physics inference, not
statistical inference

(Ref: Oberkampf and Roy, 2010)
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Pre-Experiment
Calculations Needed

Validation (Model Accuracy) Assessment,
Calibration and Prediction

Update (Calibrate) Computational Model (if Needed)
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(Ref: Oberkampf and Barone, 2006)
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Contrasting Validation,

Prediction, and Model Adequacy
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Cumulative Probability

Example of a Probability-Box
with Various Sources of Uncertainty
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™ e Prediction of thrust from

a small rocket motor

* Uncertain inputs to the
mathematical model:

— Total pressure in the
motor ~ normal
distribution

— Effect of boundary layer
transition ~ interval-
valued effect on the
expansion ratio of the
nozzle
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Example Showing Total Uncertainty
Using Alternate Competing Models

(Ref: Green, 2007)
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Closing Remarks

* Code and solution verification must be improved to ensure we
are building on a solid foundation for simulation

* Validation is focused on assessing the accuracy of
mathematical models vis-a-vis experimental measurements

* In geosciences mathematical models are dominated by
calibration procedures for model parameters

* Predictive capability:
— |Is focused on what we have never seen before

— When we make predictions far from our validation/calibration
database, we should concentrate on capturing total uncertainty

Quote from William H. Press (author of Numerical Recipes):

“Simulation and mathematical modeling will power the 21st
Century the way steam powered the 19th.”

23



References

AlAA. (1998). "Guide for the Verification and Validation of Computational Fluid Dynamics
Simulations." American Institute of Aeronautics and Astronautics, AIAA-G-077-1998,
Reston, VA.

Anderson, M. G. and P. D. Bates, Eds. (2001). Model Validation: Perspectives in
Hydrological Science. New York, NY, John Wiley & Sons LTD.

ASME (2006), “Guide for Verification and Validation in Computational Solid Mechanics,”
American Society of Mechanical Engineers, ASME V&V 10-2006.

ASME (2012), “An lllustration of the Concepts of Verification and Validation
Computational Solid Mechanics,” American Society of Mechanical Engineers, ASME
V&V 10.1-2012.

Ayyub, B. M. and G. J. Klir (2006). Uncertainty Modeling and Analysis in Engineering and
the Sciences, Boca Raton, FL, Chapman & Hall.

DoD (2000), Verification, Validation, and Accreditation (VV&A) Recommended Practices
Guide, Department of Defense Modeling and Simulation Coordination Office,
www.msco.mil

Ferson, S., W. L. Oberkampf, and L. Ginzburg (2008), “Model Validation and Predictive
Capability for the Thermal Challenge Problem,” Computer Methods in Applied
Mechanics and Engineering, Vol. 197, pp. 2408-2430.

Haimes, Y. Y. (2009), Risk Modeling, Assessment, and Management, 3rd edition, New
York, John Wiley.

Oberkampf, W. L. and T. G. Trucano (2002), “Verification and Validation in
Computational Fluid Dynamics,” Progress in Aerospace Sciences, Vol. 38, No. 3, pp.
209-272. 24



References (continued)

Oberkampf, W. L., T. G. Trucano, and C. Hirsch (2004), “Verification, Validation, and
Predictive Capability,” Applied Mechanics Reviews, Vol. 57, No. 5, pp. 345-384.

Oberkampf, W. L. and M. F. Barone (2006), "Measures of Agreement Between
Computation and Experiment: Validation Metrics," Journal of Computational Physics,
Vol. 217, No. 1, pp. 5-36.

Oberkampf, W. L. and T. G. Trucano (2008), “Verification and Validation Benchmarks,”
Nuclear Engineering and Design, Vol. 238, No. 3, 716-743.

Oberkampf, W.L. and C. J. Roy (2010), Verification and Validation in Scientific Computing,
Cambridge University Press, Cambridge, UK.

Roy, C. J. (2005). "Review of Code and Solution Verification Procedures for
Computational Simulation." Journal of Computational Physics. 205(1), 131-156.

Roy, C. J. and W. L. Oberkampf (2011). "A Comprehensive Framework for Verification,
Validation, and Uncertainty Quantification in Scientific Computing." Computer Methods
in Applied Mechanics and Engineering. 200(25-28), 2131-2144.

Szabo, B. and R. Actis (2012). "Simulation Governance: Technical Requirements for
Mechanical Design." Computer Methods in Applied Mechanics and Engineering. 249-252,
158-168.

Trucano, T. G, L. P. Swiler, T. Igusa, W. L. Oberkampf and M. Pilch (2006). " Calibration,
Validation, and Sensitivity Analysis: What's What." Reliability Engineering and System
Safety. 91(10-11), 1331-1357.

Vose, D. (2008). Risk Analysis: A guantitative guide. 3rd Ed., New York, Wiley. 25




