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About the cover: The cover image depicts Cigma’s 3D comparison between two different PyLith solutions
to the reverse-slip benchmark problem. PyLith is a finite element code for the solution of dynamic and quasi-
static tectonic deformation problems.

This benchmark problem solves for the viscoelastic (Maxwell) relaxation of stresses from a single, finite,
reverse-slip earthquake in 3D without gravity, with imposed displacement boundary conditions on a cube
with sides of 24 km in length. On the boundary, we impose displacements obtained via the analytic elastic
solutions. Additionally, symmetry boundary conditions are imposed on the y = 0 plane, so the solution is
equivalent to that for a domain with a 48 km length in the y direction. We are visualizing the error in the
displacement field between the 500m linear hexahedral and 250m tetrahedral solutions.
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Chapter 1

Introduction

1.1 About Cigma
The CIG Model Analyzer (Cigma) is a program designed to compare general numerical models. In particular,
Cigma will calculate the L2-norm of the difference between finite element models, resulting in approximate
global and local error metrics that may be used for both code verification and benchmarking purposes.

CIG developed Cigma in response to demand from the short-term tectonics community for an automated
tool that can perform rigorous error analysis on their finite element codes. For example, on the cover of this
manual is a 3D comparison for two resolutions of PyLith’s reverse-slip benchmark problem (geodynamics.
org/cig/workinggroups/short/workarea/benchmarks/benchmark-rs-nog/description-rs-nog).

By facilitating the process of data comparisons, independent of discretization, Cigma will better assist
the Geodynamics community in their benchmarking activities. We also seek to increase confidence in the
output of the CIG software by providing a standardized testing process. Such a process is vital to detecting
critical errors during code development. For this purpose, Cigma is designed to be easily extensible.

1.2 Citation
Computational Infrastructure for Geodynamics (CIG) is making this source code available to you in the
hope that the software will enhance your research in geophysics. This is a brand-new code and at present
no papers are published or in press. Please cite this manual as follows:

• Armendariz, L., and S. Kientz. Cigma User Manual. Pasadena, CA: Computational Infrastructure of
Geodynamics, 2008. URL: geodynamics.org/cig/software/cs/cigma/cigma.pdf

CIG requests that in your oral presentations and in your papers that you indicate your use of this code and
acknowledge the author of the code and CIG (geodynamics.org).

1.3 Support
Cigma development is based upon work supported by the National Science Foundation under Grant No.
EAR-0406751. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National Science Foundation. The code
is being released under the GNU General Public License v2.
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Chapter 2

Installation and Getting Help

2.1 Getting Help and Reporting Bugs
For help, send an e-mail to the CIG Computational Science Mailing List (cig-cs@geodynamics.org). You
can subscribe to the cig-cs mailing list and view archived discussions at the CIG Mail Lists web page
(geodynamics.org/cig/lists). If you encounter any bugs or have problems installing Cigma, please submit
a report to the CIG Bug Tracker (geodynamics.org/bugs).

2.2 Installing from Source
In this section we discuss how to install each of the software libraries necessary for building Cigma. We
recommend that you obtain binaries for these dependencies from your package manager of choice, or when
available from the corresponding websites. When using a package manager, you will have to make sure
to install any associated development packages, as these tend to be distributed separately from the library
packages themselves.

2.2.1 Quick Summary
After installing the necessary dependencies described below, download the source package from the CIG
Cigma web page (geodynamics.org/cig/software/packages/cs/cigma). You will need the GNU C++
compiler for this step. Unpack the source tar file and issue the following commands

$ tar xvfz cigma-1.0.0.tar.gz
$ cd cigma-1.0.0
$ ./configure \

--with-boost=$BOOST_PREFIX \
--with-hdf5=$HDF5_PREFIX \
--with-vtk=$VTK_PREFIX \
--with-vtk-version=$VTK_VERSION \
--with-netcdf=$NETCDF_PREFIX \
--with-cppunit-prefix=$CPPUNIT_PREFIX

$ make
$ make install

In general, the installation prefixes given to the configure options should be used if you have installed the
corresponding library in a custom location, but may otherwise be omitted if the prefix is one of the default
system directories, such as /usr or /usr/local. For demonstration purposes, the instructions in the next
few sections use a subdirectory of $HOME/opt as the installation prefix for each of the dependencies.

The only required options in this step are the ones for the Boost and HDF5 libraries. If you wish to
enable VTK library support, you will also have to select a specific version number by providing the configure

9
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flag --with-vtk-version, whose value defaults to “5.0”. The NetCDF option is disabled by default, but if
you wish to use ExodusII mesh files, you can provide an installation prefix to the corresponding configure
option. Lastly, the CppUnit configure option will allow you to use make check to compile and run a basic
set of unit tests which verify that Cigma is giving internally consistent results.

After all these steps are complete, you should be able to run the cigma binary and proceed to compare
your data files.

2.2.2 Boost library
The Boost C++ libraries are a collection of peer-reviewed and open source libraries that extend the func-
tionality of C++. Cigma uses Boost for its smart pointer facilities, lexical conversions, as well as for parsing
command-line options, and for providing cross-platform filesystem operations. If Boost is not available for
your platform as a binary package that can be readily installed, you may choose to install Boost with only
the components that Cigma will need,

$ tar xvfz boost_1_37_0.tar.gz
$ cd boost_1_37_0
$ ./configure --prefix=$HOME/opt/boost \

--with-libraries=system,filesystem,program_options
$ make
$ make install

Just as a reference, the full list of Boost components can be obtained with the command

$ ./configure --show-libraries

Enabling all components will certainly increase the compilation time of the Boost code, since some of those
components will require compilation.

2.2.3 HDF5 library
The Hierarchical Data Format is a library and multi-object file format for the transfer of numerical data
between computers. Since Cigma depends on the C++ API of the HDF5 library, it is important to enable
C++ support when running the configure script below. We recommend you install the library version 1.8
or higher, due to the improved metadata API in those versions. The latest source can be obtained from The
HDF Group (hdfgroup.org/HDF5), and it uses the following sequence of commands to build the library.

$ tar xvfz hdf5-1.8.2.tar.gz
$ cd hdf5-1.8.2
$ ./configure --prefix=$HOME/opt/hdf5-1.8.2 \

--with-zlib=$ZLIB_PREFIX \
--enable-cxx

$ make
$ make install

In the rare case that the zlib compression library is not already available on your system, you must install
it before running the installation procedure given above,

$ tar xvfz zlib-1.2.3.tar.gz
$ cd zlib-1.2.3
$ ./configure --prefix=$HOME/opt/hdf5-1.8.2
$ make
$ make install

In practice, you only need to do this if your system is missing the zlib development headers and you are
unable to install them otherwise.

Alternatively, compiled binaries for the HDF5 library can be obtained at (hdfgroup.org/HDF5/release/
obtain5.html).

hdfgroup.org/HDF5
hdfgroup.org/HDF5/release/obtain5.html
hdfgroup.org/HDF5/release/obtain5.html
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2.2.4 VTK library (optional)
The Visualization Toolkit (VTK) library is a popular open source graphics library for scientific visualizations.
Cigma will need to be configured with the VTK library if you plan to directly specify your functions by
using the VTK file format. The source for the VTK library is available from Kitware, Inc. (www.vtk.org/
get-software.php). You will also need the CMake build environment, available from CMake (cmake.org).
After downloading the source package for the VTK library, you can issue the following commands

$ tar xvfz vtk-5.2.0.tar.gz
$ cd VTK
$ mkdir build
$ cd build
$ ccmake ..
$ make
$ make install

The installation prefix and other settings can be changed during the ccmake step above. By default, the
installation prefix will point to the /usr/local directory, but you may want to change it to a location like
$HOME/opt/vtk-5.2 in case you would like to manage multiple versions of the VTK library in the same
system.

2.2.5 NetCDF library (optional)
NetCDF (Network Common Data Form) is a set of software libraries and machine-independent data formats
that support the creation, access, and sharing of array-oriented scientific data. The source for NetCDF can
be obtained from Unidata (www.unidata.ucar.edu/software/netcdf/).

$ tar xvfz netcdf-4.0
$ cd netcdf-4.0
$ ./configure --prefix=$HOME/opt/netcdf-4.0 \

--with-hdf5=$HOME/opt/hdf5-1.8.2 \
--enable-netcdf-4

$ make
$ make install

Using this library is optional, so it is not automatically detected at configure time. NetCDF support in
Cigma is still experimental, and is currently only intended for reading ExodusII mesh files created through
the CUBIT mesh generator. Only the first element block will be used, so that the corresponding Cigma
mesh object will consist of a single element type.

2.2.6 CppUnit library (optional)
CppUnit is a C++ unit testing framework used by Cigma for automatically running various internal con-
sistency checks during every build. You will need this library if you want to modify the Cigma source and
want to make certain guarantees about your additions to the code. After obtaining the latest source release,
you may build CppUnit by using the following sequence of steps:

$ tar xvfz cppunit-1.21.1.tar.gz
$ cd cppunit-1.21.1
$ ./configure --prefix=$HOME/opt/cppunit-1.21.1
$ make
$ make install

CppUnit is available for download from its SourceForge project site (sourceforge.net/projects/cppunit/).

www.vtk.org/get-software.php
www.vtk.org/get-software.php
cmake.org
www.unidata.ucar.edu/software/netcdf/
sourceforge.net/projects/cppunit/
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2.2.7 Compiling Cigma
After carefully following the instructions above, we should be able to install Cigma using this set of com-
mands:

$ tar xvfz cigma-1.0.0.tar.gz
$ cd cigma-1.0.0
$ ./configure --prefix=$HOME/opt/cigma-1.0.0 \

--with-boost=$HOME/opt/boost \
--with-hdf5=$HOME/opt/hdf5-1.8.2 \
--with-vtk=$HOME/opt/vtk-5.2.0 \
--with-vtk-version=5.2 \
--with-cppunit-prefix=$HOME/opt/cppunit-1.21.1

$ make
$ make check
$ make install

These instructions have used custom installation locations, so it is also necessary to update the PATH and
LD_LIBRARY_PATH environment variables. Preferably you should update these environment variables in your
shell login file, but you can also update them on the command line itself. Here we show the appropriate set
of commands for a bash shell session.

$ PATH=”$PATH:$HOME/opt/cigma-1.0.0/bin”
$ PATH=”$PATH:$HOME/opt/hdf5-1.8.2/bin”
$ export PATH
$ LD_LIBRARY_PATH=”$HOME/opt/boost/lib:$LD_LIBRARY_PATH”
$ LD_LIBRARY_PATH=”$HOME/opt/hdf5-1.8.2/lib:$LD_LIBRARY_PATH”
$ LD_LIBRARY_PATH=”$HOME/opt/vtk-5.2.0/lib:$LD_LIBRARY_PATH”
$ export LD_LIBRARY_PATH

On Mac OS X, you will also need to update the DYLD_LIBRARY_PATH environment variable,

$ DYLD_LIBRARY_PATH=”$HOME/opt/boost/lib:$DYLD_LIBRARY_PATH”
$ DYLD_LIBRARY_PATH=”$HOME/opt/hdf5-1.8.2/lib:$DYLD_LIBRARY_PATH”
$ DYLD_LIBRARY_PATH=”$HOME/opt/vtk-5.2.0/lib:$DYLD_LIBRARY_PATH”
$ export DYLD_LIBRARY_PATH

No environment variables need to be set if all installation prefixes use a system directory.

2.3 Installing from the Software Repository
The Cigma source code is available via the CIG Subversion Repository (geodynamics.org/cig/software/
Repository). For this section, you will need a Subversion client, as well as the GNU tools Autoconf,
Automake, and Libtool. To check if you have a Subversion client installed, type svn and look for a usage
message

$ svn
Type ’svn help’ for usage.

To check for the presence of the GNU Autotools, use the following commands:

$ autoconf --version
$ automake --version
$ libtoolize --version

Using the source repository directly is recommended for users who want to extend Cigma.

geodynamics.org/cig/software/Repository
geodynamics.org/cig/software/Repository
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2.3.1 Downloading the Cigma Source
You may check out the latest version of Cigma by using the svn checkout command:

$ svn checkout http://geodynamics.org/svn/cig/cs/cigma/trunk cigma

This will create the local directory cigma and fill it with the latest Cigma source from the CIG software
repository. This new directory is called a working copy. To merge the latest changes into your working copy,
use the svn update command:

$ cd cigma
$ svn update

This will preserve any local changes you have made to your working copy.

2.3.2 Using the GNU Build System
Once you have obtained a working copy of the Cigma source, you will need to use the GNU Autotools to
generate the appropriate build files. This can be accomplished by running the command autoreconf -fi:

$ cd cigma
$ autoreconf -fi

The autoreconf tool generates the configure script from the configure.ac file. It also runs Automake
to generate Makefile.in from Makefile.am in each source directory. After running autoreconf, you may
configure, build, and install Cigma as described in Section 2.2.
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Chapter 3

Error Analysis

3.1 Error Analysis
When solving differential equations representing physical systems of interest, we are often able to obtain
a family of solutions by applying a variety of solution techniques. Sometimes an analytic method can be
found, but most of the time we end up resorting to a numerical algorithm, such as the finite element method.
Assessing the quality of these solutions is an important task, so we would like to develop a quantitative
measure for indicating just how close our solutions approach the exact answer.

The simplest possible quantitative measure of the difference between two distinct functions consists of
taking the pointwise difference at a common set of points. While no finite sample of points can perfectly
represent a continuum of values, valuable information can be inferred from the statistics of the resulting set
of differences. However, the functions we want to compare may not be defined at a common set of points.
Unless we are able to interpolate the two functions on an intermediate set of points, this simple pointwise
measure becomes inapplicable.

A very useful distance measure we can use is the L2 norm, defined by the following integral

ε = ||u− v||L2 =

√∫
Ω

||u(~x)− v(~x)||2d~x (3.1)

where u and v are the two functions defined on a global coordinate system. This gives us a single global
estimate ε representing the distance between the two functions u(~x) and v(~x). Alternatively, you may think
of this as the size, or norm, of the error field ρ(~x) = u(~x)− v(~x). This measure is useful because it is well
known that solutions obtained with the finite element method converge only in a weak sense, as an average
over a geometric region. In the rest of this chapter we will discuss the details involved in evaluating the
above integral.

Another quantitative measure, which we won’t discuss in this version of Cigma, is the energy norm. This
norm is typically employed in a posteriori error analysis and is problem dependent. In general, the error field
used under this norm is defined in terms of the linearized equation from which the solution was obtained,
instead of directly subtracting the corresponding function values.

3.2 Functions
The functions that we discuss in this manual are assumed to be defined in a common region of space which
we denote by Ω. Elements of Ω are written as ~x, and the number of components in the corresponding value
of f(~x), is said to be the rank of the function f . Thus, scalar functions have a rank of 1, while vector
functions usually have a rank of either 2 or 3.

15
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3.3 Integral Approximations
In order to evaluate the integral for our L2 norm, we will need to define an integration mesh which partitions
the common domain Ω on which our two functions are defined. We can then use a numerical approximation,
or integration rule , on each of the discrete cell elements Ωi of our partition. Each of these cell integrals of
the continuous error norm ||ρ(~x)||2 can then be replaced by a weighed sum evaluated at a finite set of points.
This integral will be valid up to a certain accuracy. In later chapters, we will discuss in more detail how to
choose the location and values for the integration points and weights which give optimal accuracy.

In general, an integration rule with Q points and weights that allows us to integrate the scalar function
F (~x) is given by the equation ∫

Ωi

F (~x) d~x ≈
Q∑
q=1

F ( ~Xq)Wq (3.2)

where the integration points ~Xq and integration weights Wq depend on the integration region Ωi. One
possibility is to pre-calculate these points and weights explicitly on a specific discretization. We will generally
want to define a reference cell Ω̂ which acts as a template for all cells with the same geometric shape. We
can achieve this by defining a reference map χi : Ω̂ → Ωi that describes how points in a specific cell Ωi
originate from the reference cell Ω̂. In this sense, the reference cell Ω̂ is said to define a local coordinate
system for the i-th cell Ωi.

Note that a given discretization may contain cells of different shapes, which would require us to define
an appropriate number of reference cells for each type of cell. However, we may restrict the discussions in
this manual to discretizations consisting of a single geometric shape without any loss of generality.

The advantage of this approach is readily apparent when one realizes that the integration points and
weights can be calculated once and for all on the reference cell, and then reused for the other cells through
the application of the corresponding reference map. In other words,

~Xq = χi(~ξq) (3.3)

Wq = wqJi(~ξq) (3.4)

where ~ξq and wq are the optimal integration points and weights for the integration rule defined on the
reference domain Ω̂. Here, the factor Ji(~ξ) = det

∣∣∣dχi

d~ξ

∣∣∣ is the Jacobian determinant of the transformation χi.
Recall that the index i corresponds to the i-th cell Ωi, and the index q ranges over the usual q = 1, . . . , Q.

3.4 Interpolation Functions
Our two functions u(~x) and v(~x) are given in terms of the point ~x ∈ Ω, and are said to be defined on a
global coordinate system . Based on our discussion in Section 3.1, we see that we only need to know the
values of u and v at a finite set of global points in order to calculate an approximation to the L2 norm of
the error field ρ = u− v.

Specifically, given a function f(~x) we must be able to calculate its values at exactly those integration
points. If we know a formula or algorithm for f , then our task is easy. Alternatively, these values can be
given explicitly as a finite list. In all other cases, we will need an interpolation scheme that allows us to
calculate f on any intermediate points. This ability is also important because we may want to increase the
accuracy of our norm by using more integration points, and thus we will need to be able to evaluate our
function f at the new points.

In general, an interpolation scheme involves a set of known functions φj(~x) that we can compute anywhere
and a set of parameters cj that define how these known functions are combined. Usually, the relation between
the parameters and the known functions is a linear combination,

f(~x) = d1φ1(~x) + d2φ2(~x) + · · ·+ dmφm(~x) (3.5)

where the parameters dj , with j = 1, . . . ,m, are also sometimes referred to as the degrees of freedom of
the function f . As described in Chapter 4, the functions φj , also known as shape functions, must satisfy a
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number of conditions. Because the choice of shape functions affects how well the true solution is represented,
the convergence of the numerical method used to obtain the solution, the optimal choice of shape functions
is very problem dependent.

If we know the shape functions φj directly in terms of the global points ~x ∈ Ω, they are said to form a
global interpolation scheme , and we may use Eq. 3.3 directly to find the values of f(~x), and we may
refer to the φj as global shape functions. Note that since we are working in the global coordinate system, we
don’t need the discretization of the domain Ω. An example of global shape functions would be the spherical
harmonic functions.

Perhaps a more typical case is when f(~x) is defined piecewise, on each discretization element Ωi. Because
these cells partition the original domain by definition, a given point in our domain will be found in one and
only one cell, which will have a local definition. That is, for a particular ~x ∈ Ω we will be able to find a
unique cell Ωe, for some index e. We can refer to this as a local interpolation scheme .

Refer to the Appendix for more details on the specific interpolation schemes available in Cigma.

3.5 Global Error Measure
In this section we discuss the underlying formula used by Cigma to compute the L2 norm of the error field
ρ.

Suppose the domain Ω is partitioned into an appropriate set of cells Ω1,Ω2, . . . ,Ωnel
. We can then

compute the global error ε2 as a sum over localized cell contributions, ε2 =
∑
e ε

2
e, where each cell error ε2

e

is given by

ε2
e =

∫
Ωe

||u(~x)− v(~x)||2d~x (3.6)

In general, we won’t be able to integrate each cell error ε2
e exactly since either of the functions u and v

may have an incompatible representation relative to the finite element space on each domain Ωe. However,
we can still calculate an approximation of each cell error by applying an appropriate quadrature rule with a
tolerable truncation error [5].

To obtain an approximation to the integral of a function F (~x) over a cell Ωe, we simply apply the
quadrature rule with weights we,1, we,2, . . . , we,nQ

and integration points ~xe,1, ~xe,2, . . . , ~xe,nQ
appropriate for

the physical element Ωe: ∫
Ωe

F (~x) d~x =
nQ∑
q=1

we,qF (~xe,q) (3.7)

Applying this quadrature rule directly over the entire physical domain Ω = ∪Ωe gives us∫
Ω

F (~x) d~x =
nel∑
e=1

nQ∑
q=1

we,qF (~xe,q) (3.8)

For efficiency reasons, it is undesirable in finite element applications to perform calculations in a global
coordinate system. To avoid duplication of work, shape function evaluations may be performed once on a
reference cell Ω̂ and then transformed back into the corresponding physical cell Ωe as needed.

To compute integrals of F in a reference coordinate system, we need to apply a change of variables:∫
Ωe

F (~x) d~x =
∫

Ω̂

F (~xe(~ξ))Je(~ξ) d~ξ (3.9)

where the additional factor Je(~ξ) = det
[
d~xe

d~ξ

]
is the Jacobian determinant of the reference map ~xe(~ξ) : Ω̂→

Ωe. This map describes how the physical points ~x ∈ Ωe are transformed from the reference points ~ξ ∈ Ω̂.
Put another way, the inverse reference map ~ξ = ~x−1

e (~x) tells us how the physical domain Ωe maps into the
reference cell Ω̂.
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At this point, we can assume without loss of generality that every physical cell Ωe can be derived from a
single reference cell Ω̂, so that our quadrature rule becomes simply a set of weights w1, . . . , wnQ

and points
~ξ1, . . . , ~ξnQ

over Ω̂. After changing variables, we end up with the final form of the quadrature rule that we
can use to integrate the global error field:∫

Ω̂

F (~xe(~ξ))Je(~ξ) d~ξ =
nQ∑
q=1

wqF (~xe(~ξq))Je(~ξq) (3.10)

If we let F (~x) = ||u(~x)− v(~x)||2 in the above expression, we can find the cell error contribution over Ωe
from

ε2
e =

∫
Ωe

||u(~x)− v(~x)||2 d~x

=
∫

Ω̂

||u(~xe(~ξ))− v(~xe(~ξ))||2Je(~ξ) d~ξ

=
nQ∑
q=1

||u(~xe(~ξq))− v(~xe(~ξq))||2wqJe(~ξq) (3.11)

The global error ε =
√∑

e ε
2
e is then approximated by the expression

ε =

√√√√ nel∑
e=1

nQ∑
q=1

||u(~xe(~ξq))− v(~xe(~ξq))||2wqJe(~ξq) (3.12)

We use this final form to calculate the global and localized errors on arbitrary discretizations.

3.6 Comparing Global Error Quantities
Since the absolute magnitude of the L2-norm is typically not important, you may want to normalize it
relative to another computable global quantity, to make comparisons easier. One possibility would be to
normalize the global error by the norm of the exact solution. For a family of solutions uh(~x), parametrized
by the maximum element size h of the underlying discretization, and an exact solution u(~x), this normalized
error is given by

εrel =
||u− uh||L2

||u||L2

=

∫
Ω
||u(~x)− uh(~x)||2d~x∫

Ω
||u(~x)||2d~x

(3.13)

Alternatively, we can normalize the global error using the total volume of the domain

εabs =
||u− uh||L2√

V

=

√∫
Ω
||u(~x)− uh(~x)||2d~x√∫

Ω
d~x

(3.14)

which is the normalization that Cigma uses by default.
This normalized error can be interpreted as the average error in the physical quantity being evaluated,

so that a value of 0.01 corresponds to a 1% averaged error, in absolute units. Even if the exact solution is
not currently known, this normalized error may be used to test the accuracy between two or more numerical
solutions, defined on successively refined meshes.
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3.7 Convergence Rates
Once we have calculated a family of solutions uh(~x) on a family of increasingly refined meshes Ωh, where h
is a parameter denoting the size of the largest element in the corresponding mesh Ωh, we may estimate how
fast we are converging to the analytic solution u(~x) by using the standard error estimate ||u− uh||p ≤ Chα,
where C is a constant independent of both h and u. This error bound holds for a wide range of problems and
may be used for estimating the convergence rate α. If the analytic solution u is unknown, one may use in its
place the highest-accuracy solution available. In that case, the value of h you should use would correspond
to the lower-accuracy solution against which you are comparing.

For a single refinement level we have two discretizations Ω1 and Ω2, along with the corresponding solutions
u1 and u2. The convergence rate can then be estimated from the two approximate bounds

ε1 ∼ Chα1 (3.15)
ε2 ∼ Chα2 (3.16)

by taking their ratio and solving for α, giving us the equation

α ∼ log(ε2/ε1)
log(h2/h1)

(3.17)

If solutions are available for several refinement levels Ωi, we can estimate α by performing linear regression
analysis on the equation

log εi = logC + α log hi (3.18)

over the transformed variables Xi = log hi and Yi = log εi. The slope of that regression line gives an estimate
of α. You can use the SciPy and Matplotlib Python modules to write two functions that can give you precisely
that estimate.

Listing 3.1: Python functions for calculating and plotting the best least-squares power law fit.
import numpy
import matp lo t l i b

from s c ipy . opt imize import l e a s t s q
from pylab import l og l og , t i t l e , show

def power_law_fit (X, Y) :

# v e r i f y input arrays have same l en g t h
a s s e r t l en (X) == len (Y)

# parametr ic f unc t i on r ep r e s en t i n g power−law
power_law = lambda v , x : v [ 0 ] ∗ x ∗∗ v [ 1 ]

# error func t i on
error_fn = lambda v , x , y : ( power_law (v , x ) − y )

# i n i t i a l parameter va lue
v0 = (1 , 1 )

# f ind opt imal parameters v
(v , s u c c e s s ) = l e a s t s q ( error_fn , v0 , args=(X,Y) , maxfev=1000)
print ’ Best f i t : e r r =’ , v [ 0 ] , ’ ∗ h ^ ’ , v [ 1 ]

return (v , s u c c e s s )
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def plot_power_law (X,Y, ∗∗kw ) :

(v , s u c c e s s ) = power_law_fit (X,Y)

x = numpy . array (X)
y = numpy . array (Y)

# f i n a l l y , p l o t po in t s a long wi th bes t− f i t f unc t i on .
plot_fn = kw . get ( ’ p l o t ’ , l o g l o g )
plot_fn (x , y , ’ ro ’ )
plot_fn (x , power_law (v , x ) )

t i t l e ( r ’ $\ va r ep s i l on \ =\ %f \ h^{%f }$ ’ % (v [ 0 ] , v [ 1 ] ) )

show ( )

A similar script called power-plot.py is provided in the Cigma source code. It expects a single command
line argument: a file name which contains the points (hi, εi). Running that script will plot the regression
line associated with the points (log hi, log εi).



Chapter 4

Running Cigma

Cigma is primarily designed for calculating error estimates between arbitrary functions. These functions
can be defined as mathematical functions or as fields over finite element meshes. The primary operation of
Cigma has the basic form

$ cigma compare FunctionA FunctionB

which executes a global comparison between two generic functions FunctionA and FunctionB.
The full list of options for Cigma can be obtained by running the cigma help command.

$ cigma help
Usage: cigma <subcommand> [options] [args]
Type ’cigma help <subcommand>’ for help on a specific subcommand.
Type ’cigma --version’ to see the program version
Available subcommands:

compare Calculate global L2 error, and local differences between two functions
list List file contents (fields, dimensions, ...)
mesh-info Show information about specified mesh
function-info Show list of pre-defined functions
element-info Show information about available element types

Cigma is a tool for calculating L2-norm differences between numerical models.
For additional information, visit http://geodynamics.org/

In this Chapter, we give a general overview of each of these subcommands, explain the meaning of each
of their command line options, and give hypothetical examples of typical usage patterns. We delay discus-
sion of actual examples until the next Chapter, where we rely on publically available data files that can
be downloaded from the Cigma software page at (geodynamics.org/cig/software/packages/cs/cigma/
cigma-data-1.0.0.tar.gz).

4.1 Selecting a Dataset
In general, you will provide data to Cigma as a simple array of values. Because most scientific formats are
capable of storing multiple datasets in the same file, you will need a consistent way to select a specific array
on a given data file. Therefore, all option arguments to Cigma that expect a dataset can be specified in
the form Filename:Location. If the filename part unambiguously determines the target array, then the
location part of the option argument may be omitted. For example, consider two HDF5 files, “low_res.h5”
and “high_res.h5” which each have fields “density” and “pressure”. Then the command

cigma compare high_res.h5:density low_res.h5:density -o low_high.h5

will compare the density fields between the two files on the mesh defined in high_res.h5.
Depending on how it was configured, Cigma understands a number of different file formats, including

HDF5 and VTK formats. The file format is determined by the filename extension.

21

geodynamics.org/cig/software/packages/cs/cigma/cigma-data-1.0.0.tar.gz
geodynamics.org/cig/software/packages/cs/cigma/cigma-data-1.0.0.tar.gz


22 CHAPTER 4. RUNNING CIGMA

4.2 Comparison Options
We can exercise more control over the region of integration, and obtain a corresponding local error field by
using the command

$ cigma compare \
-a FunctionA \
-b FunctionB \
-m IntegrationMesh \
-o L2_Errors_on_IntegrationCells

This command will evaluate FunctionA and FunctionB on the quadrature points of IntegrationMesh, and
compute the L2-norm of the difference between these two functions. The output file will be used to store
each of the local L2-differences between the two functions over the cells in the integration mesh.

4.3 Mesh Options
A mesh in Cigma is defined by three items: (1) the nodal Cartesian coordinates, (2) the connectivity
(topological information describing how those nodes are connected to each other to form elements), and (3)
an element type associated with the cell, e.g., triangles, quadrilaterals, tetrahedra, and hexahedra. Up to
three such meshes, MeshA (the mesh for FunctionA), MeshB (for FunctionB) and the IntegrationMesh,
can be passed as arguments in Cigma. These items are determined by the following command line options,
arranged in a tabular format for easier reference.

Option MeshA MeshB IntegrationMesh Item

M --first-mesh --second-mesh --mesh (1,2,3)

M1 --first-mesh-coords --second-mesh-coords --mesh-coords (1)

M2 --first-mesh-connect --second-mesh-connect --mesh-connect (2)

MC --first-cell --second-cell --mesh-cell (3)

There are a number of rules determining which of these options are required. For any of the MeshA,
MeshB, and IntegrationMesh columns in the table above, the relationship between these options is as
follows:

1. If option (M) is given, then options (M1) and (M2) are forbidden.

2. If option (M) is missing, then both options (M1) and (M2) must be specified.

3. Option (MC) can be deduced from option (M).

4. Option (MC) is required if options (M1) and (M2) are given.

It is important to note that currently Cigma assumes that every element in the mesh is defined over the
same cell type.

4.3.1 Data Layout in a Mesh File
When using an HDF5 file to store the mesh information, the location, or internal path, associated with option
(M) must point to an HDF5 group that contains two arrays with the relevant mesh information. Those two
arrays must be named coordinates and connectivity. If the location is empty, as is the case when only
filename is specified, then the HDF5 group is assumed to be the root group (/) of the hierarchy. Lastly,
the option (MC) can be omitted if the HDF5 group has an attribute called CellType with the appropriate
value. A typical hierarchy that specifies a mesh would look like this:
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File mesh.h5
‘Group /mesh
|-- Attribute CellType
|-- Array coordinates
‘-- Array connectivity

One may specify options (M1) and (M2) separately by pointing directly to the arrays corresponding to the
coordinates and connectivity information. The node ordering on the connectivity dataset is described in
Appendix A.

Alternatively, using a VTK file is very convenient. In this case, no location needs to be specified since all
the appropriate information are always in the VTK file. The value of the option (MC) is determined from
the first entry in the CELL_TYPES dataset, since we are limiting ourselves to element blocks consisting of a
single cell type.

Another convenient way to prepare a mesh file for use with Cigma is to use the ExodusII format created
by the CUBIT mesh generation toolkit. In this case, the mesh can be stored on disk using the NetCDF
format. It suffices to give the filename, without the location part, to option (M). The appropriate mesh
information will be read from the file. Only the first element block in the ExodusII file is used. The value of
the (MC) option is determined from the NetCDF string attribute elem_type that is attached to the NetCDF
integer variable called connect1.

Lastly, it is also possible to use a simple text file, in which case all three options (M1), (M2), and (MC)
are required.

4.3.2 Integration Mesh
An integration mesh can be specified by the command line options, subject to the following rules:

1. If IntegrationMesh is specified, then it is used.

2. If IntegrationMesh is missing, then MeshA is used as IntegrationMesh.

3. If only MeshB is given, then it is used as IntegrationMesh.

Deciding if a given mesh is adequate for accurately capturing the error in the comparison will clearly depend
on the functions being compared.

One strategy to ensure an adequate mesh would be to take the discretization cells on which the error
metric exceeds a certain threshold, mark those cells for refinement, and recalculate the errors over the new
discretization, repeating the process if necessary. This strategy could be implemented on top of Cigma as a
series of post-processing steps by writing a suitable program or script that repeats this refinement process
until the variations in the global error metric are small enough.

A second strategy would be to increase the order of the quadrature rule that we associate with the cells
in the integration mesh. This approach has the advantage that we can increase the accuracy of the L2-norm
without performing pre- and post-processing on a sequence of integration meshes.

IntegrationRule
R --rule
R1 --rule-points
R2 --rule-weights

A number of common quadrature rules, including high-order quadratures, for different cell types are
available by default. They are stored in file integration-rules.h5, which was generated using the Jacobi
quadrature rules available in the FIAT (finite element automatic tabulator) Python module. Using these
higher-order quadrature rules should allow you to increase the accuracy of the L2-norm integral without
having to adaptively refine the integration meshes.

The default integration rule used on each cell type can be obtained by running the cigma element-info
command, as shown in Section 4.7.3.
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4.4 Function Options
Cigma will accept two kinds of function arguments: (1) an analytic function chosen from a pre-defined list,
or (2) a finite element field. Of these two, only the second kind is associated with a specific mesh. Therefore,
when comparing two analytic functions, an integration mesh must (XXX).

4.4.1 Analytic Functions
Sometimes you will be able to express a function in terms of a general formula or algorithm, in which case
you would like to be able to refer to such a function by using a simple name when specifying either of the
FunctionA or FunctionB arguments. Extending Cigma by defining your own functions is ideal (XXX) for
analytic functions for benchmarking your own code.

Two such examples can be found in the Cigma source code. A simple analytic function is available in the
fn_inclusion.h and fn_inclusion.cpp source files (used in Example 5.3), while a more complex function
which calls external procedures is available in fn_disloc3d.h and fn_disloc3d.cpp. If you wish to define
your own analytic functions, it might be instructive to use either of these two examples as a template.

4.4.2 Finite Element Fields
A finite element description of a function is associated with three items of information: (1) a discretization
(nodes and connectivity), (2) a finite set of local basis functions (cell type) defined on the discretization,
and finally (3) a global list of coefficients defined on the nodes that yield the closest approximation to
the function. How these items are specified depends on the underlying file format used to store the finite
element description to our function. Items (1) and (2) are typically deduced from the appropriate mesh
options discussed in Section 4.3, while item (3) is determined from the dataset given to either of the --first
or --second command line options.

If the dataset is stored in an HDF5 file, item (3) would be typically specified as a single array containing
the shape function coefficients. You can optionally attach an attribute called MeshLocation to that dataset,
which points to the mesh datagroup.

File “model.h5”
Group fields
|-- Group temperature
| |-- Array step000
| | ‘-- Attribute MeshLocation
| |-- Array step001
| | ‘-- Attribute MeshLocation
| ‘-- ...
‘-- Group displacements

|-- ...
‘-- ...

Note that in this example, we have grouped all fields by variable name first (e.g., temperature and displace-
ments) and then by time step, but we could have easily grouped everything by time step first and then by
variable name. Cigma will only operate on the full path to a dataset, leaving you the freedom to organize
your data as you see fit.

If the dataset is stored in a VTK file, the only restrictions are that you can only compare against Point
Data arrays, and one cell type per file. Otherwise, you may use any of the formats supported by the VTK
library (structured, rectilinear, etc.) to define your field.

4.4.3 Spatial Database Options
Recall from Chapter 3 that computing the local error metric involves approximating a local error integral by
a finite weighed sum over a set of quadrature points. Because we allow arbitrary meshes for the integration
procedure, that means that in general we must be able to evaluate our functions wherever those quadrature
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points may lie. This implies that we must be able to evaluate the given functions at arbitrary points. This
step is typically inefficient even for a moderate-size finite element mesh, since a sequential scan over a mesh
with n elements would take O(n) time per quadrature point evaluation. To make this process efficient in
general, we can build a spatial-index database of the geometric locations of every element in the mesh.
Using a tree-based partitioning of the element locations, we can ideally reduce the search time to O(log n)
per quadrature point evaluation.

Cigma uses a nearest-neighbor search on a kd-tree structure to find the appropriate cell that contains a
given quadrature point. This means that for a given point, a fixed number of nearest neighbors are checked
before proceeding with a sequential scan over all elements. If you find a particular comparison is taking too
long, it may help to increase the number of nearest elements that are checked, which can be done by passing
a positive integer to any of the command line options --first-mesh-nnk and --second-mesh-nnk.

For meshes with more structure, it would be possible to define an appropriate cigma::Locator subclass
to provide a search time of O(1) per quadrature point evaluation, but this is not currently implemented in
Cigma.

4.5 Other Options
There are a few other notable options that enable us to monitor the timing statistics on the progress of
the calculation, as well as debugging information that may prove useful when encountering an unexpected
exception.

In order to monitor the progress of the integration, simply add the --verbose (or -v) flag to the command
options,

$ cigma compare FunctionA FunctionB --verbose

By default, the timer will report its progress every 100 integration cells, but you can change that default by
using the option --timer-frequency (or -t),

$ cigma compare FunctionA FunctionB --verbose --timer-frequency=1000

Debugging information can be displayed using the --debug (or -D) flag, which will output an internal trace
of which functions have been called and with what arguments.

$ cigma compare FunctionA FunctionB --debug

On the other hand, suppressing all output can be accomplished with the --quiet flag. This flag is probably
most useful when used together with the option --global-threshold (or -g),

$ cigma compare FunctionA FunctionB --quiet --global-threshold=0.001

In this case, the exit code will indicate failure (i.e., return a non-zero value) whenever the L2-norm is
grearter than the specified threshold condition. This allows you to set up automated regression scripts that
can constantly compare output from your numerical codes against a series of known benchmark solutions.

4.6 Visualizing the Local Errors
The command cigma compare will always output the local L2-errors in the “raw” form described in Equation
3.11. However, for visualization purposes, it’s more convenient to normalize those integrated errors εi by
the corresponding integration-cell volumes vi, so that errors accumulated over smaller cells have more visual
influence than errors of the same magnitude accumulated over larger cells. Additionally, it may also be more
useful to output the logarithm of the normalized errors instead. Using a logarithmic scale will accentuate
the contrast between the orders of magnitude when visualizing the normalized L2-error field.

For these reasons, we include in Cigma a post-processing utility called visualize-errors that can take
our error fields stored in HDF5 format and create a simple legacy VTK file, which can then be conveniently
visualized using many other visualization packages. The utility visualize-errors can be used as follows,
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$ visualize-errors [--use-logarithmic-scale] \
-m MeshFile.h5:/meshpath \
-i InputErrors.h5:/errorpath \
-o OutputErrors.vtk:NormalizedErrors

Specifically, this command will take each of the local errors εi from the HDF5 file InputErrors.h5, normalize
them by the factor

√
vi, where vi is the corresponding volume of the i-th cell taken from MeshFile.h5, and

write the result to a VTK file called OutputErrors.vtk under an array called NormalizedErrors. One may
also specify the flag --use-logarithmic-scale, in which case the above command will take the logarithm
(in base 10) before writing the final results to the VTK file.

4.7 Verifying the Results
The rest of the Cigma commands are there to help you query your model data files, allowing you to determine
whether the input files are being interpreted properly. A common problem in specifying a finite element mesh
is using the wrong node numbering for a particular Cigma element, in which case you will probably encounter
cells with negative or zero volumes, and incorrect results for the inverse reference map ~x−1

e (~x). Also, if the
degrees of freedom are specified using a different node ordering than the mesh, the interpolation will yield
different results than expected. Querying your model at a number of pre-selected points will probably curtail
most of these mistakes when preparing your input files.

4.7.1 Working with a Mesh
Using the command cigma mesh-info, you can examine your mesh files and extract basic information such
as the number of nodes and cells, the total volume, bounding box, and the maximum cell diameter of your
mesh.

$ cigma mesh-info MESH

You can also extract connectivity information for a specific cell in your mesh, which will help you find out
whether the elements that your finite element model use have the same node ordering as the elements in
Cigma,

$ cigma mesh-info MESH --cell-id=N

Lastly, you can also query an arbitrary point within the mesh,

$ cigma mesh-info MESH --query-point=”[x,y,z]”

This will return the information of the cell that contains the query point, which is useful to verify that the
underlying spatial index that maps points to cells is working properly.

4.7.2 Working with Analytic Functions
Finding information on given function can be done with the cigma function-info command. Using it
without arguments will return the list of analytic functions that have been compiled into Cigma. Two
special scalar functions,

$ cigma function-info
one
zero
...

You can also query any function accepted by the cigma compare command, not just built-in analytic func-
tions, at any arbitrary point in its function domain,
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$ cigma function-info FUNCTION --query-point=”[x,y,z]”

This will allow you to verify whether the function is reporting the correct value at the expected point. You
can use this to check that the element interpolations are done correctly, and whether a newly defined analytic
function returns the appropriate values on a selection of points.

4.7.3 Working with Elements
On a more basic level, you can also verify that the basis functions for your reference element work as
expected, especially if you decide to extend Cigma by adding your own element types. Calling the cigma
element-info command without arguments will generate the list of registered elements. Note that the
names of the element types listed here correspond to the acceptable values that you can give to the (MC)
argument discussed in Section 4.3.

$ cigma element-info
List of elements available for use in a Field:

tet4, hex8
tri3, quad4

For example, querying the hex8 element would result in the following information being displayed

$ cigma element-info hex8
Information on cell ’hex8’
Reference-Cell Nodes:

0 -1.000000 -1.000000 -1.000000
1 +1.000000 -1.000000 -1.000000
2 +1.000000 +1.000000 -1.000000
3 -1.000000 +1.000000 -1.000000
4 -1.000000 -1.000000 +1.000000
5 +1.000000 -1.000000 +1.000000
6 +1.000000 +1.000000 +1.000000
7 -1.000000 +1.000000 +1.000000

Shape functions:
N[0] = 0.125 * (1.0 - u) * (1.0 - v) * (1.0 - w)
N[1] = 0.125 * (1.0 + u) * (1.0 - v) * (1.0 - w)
N[2] = 0.125 * (1.0 + u) * (1.0 + v) * (1.0 - w)
N[3] = 0.125 * (1.0 - u) * (1.0 + v) * (1.0 - w)
N[4] = 0.125 * (1.0 - u) * (1.0 - v) * (1.0 + w)
N[5] = 0.125 * (1.0 + u) * (1.0 - v) * (1.0 + w)
N[6] = 0.125 * (1.0 + u) * (1.0 + v) * (1.0 + w)
N[7] = 0.125 * (1.0 - u) * (1.0 + v) * (1.0 + w)

Default integration rule (weights & points):
1.000000 -0.577350 -0.577350 -0.577350
1.000000 +0.577350 -0.577350 -0.577350
1.000000 +0.577350 +0.577350 -0.577350
1.000000 -0.577350 +0.577350 -0.577350
1.000000 -0.577350 -0.577350 +0.577350
1.000000 +0.577350 -0.577350 +0.577350
1.000000 +0.577350 +0.577350 +0.577350
1.000000 -0.577350 +0.577350 +0.577350

Querying the shape function values is possible by using the previously discussed command cigma function-info
and an appropriately defined mesh containing a single element. These reference meshes are provided in the
top level data file reference-cells.h5.
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Chapter 5

Examples

In this chapter, we show how to use Cigma to run specific comparisons on included datasets, estimate the
order of convergence of the numerical methods used in obtaining those solutions, and visualize the resulting
error fields.

5.1 Poisson Problem
Cigma can compare two functions and return the L2-norm difference between those two functions. For a
given numerical problem, if you compute the solutions over a range of resolutions, you can use this global
measure to quantify the rate of convergence of your numerical method. To demonstrate how this works, we
will use the two Poisson problems:

(1) ∇2φ(x, y) = 4x4 + 4y4 inside Ω = [−1, 1]2, subject to the Dirichlet boundary condition φ(x0, y0) =
x2

0 + y2
0 on the boundary ∂Ω, and

(2) ∇2φ(x, y, z) = 4x4 + 4y4 + 4z4 on Ω = [−1, 1]3 subject to φ(x0, y0, z0) = x2
0 +y2

0 + z2
0 on the boundary

∂Ω.
These differential equations can be easily solved numerically by using a finite element software library

called Deal.II, which supports Lagrange finite elements of any order in either 2 or 3 dimensions. In fact, the
two equations we have described are already solved in Step 4 in the list of the Deal.II tutorial programs in
(dealii.org/developer/doxygen/tutorial/).

In the examples/ subdirectory, we include a version of the Step 4 tutorial program that has been slightly
modified to suit our purposes in this section. First, we change the output format to use VTK files, in order
to make it very convenient for us to provide our input datasets to Cigma. Next, we solve the 2D problem
over meshes of resolution 64 × 64, 32 × 32, 16 × 16, and 8 × 8 by using linear quadrilateral elements. The
solution is saved in file phi_64x64x64.vtk for the highest resolution, for example. In a similar fashion, we
solve our 3D Poisson problem on meshes of resolution 64× 64× 64, 32× 32× 32, 16× 16× 16, and 8× 8× 8,
that use linear hexahedral elements. Note that in either case, we don’t really know the exact solution to
either problem, so we use the highest resolution available as the reference point for our comparisons. The
following bash shell command can take care of all the comparisons

$ for r in 32 16 8; do
cigma compare phi_64x64.vtk phi_${r}x${r}.vtk
cigma compare phi_64x64x64.vtk phi_${r}x${r}x${r}.vtk

done

When we run the above code on the command line, or script, Cigma will generate a summary of each com-
parison, including the L2 norm of the difference between the two functions, and other basic mesh information
such as its volume V and maximum cell diagonal h. We summarize that information in the following tables:
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n hn ||φn − φ64×64||L2/
√
V n hn ||φn − φ64×64×64||L2/

√
V

8× 8 0.35355 0.012312 8× 8× 8 0.43301 0.019205
16× 16 0.17677 0.003157 16× 16× 16 0.21650 0.004889
32× 32 0.08838 0.000689 32× 32× 32 0.10825 0.001075

It should become apparent from these results that the global error metric ε does indeed decrease with
increasing resolution at the expected rate. To verify the exact order of convergence, you can use regression
analysis to fit a power law through the above points, and obtain the following plots:

Figure 5.1: Convergence of L2 Global Error for Poisson problems in 2D and 3D.

Based on the slope of the lines in the above log-log plots, we have indeed verified that the global errors
behave as ε = Ch2, as expected from a method that uses linear elements.

5.2 Mantle Convection
In addition to reporting a global error metric, Cigma can also output local errors between two fields, averaged
over each of the integration cells used in the calculation of the L2 norm (or error). You can use this scalar
error field to ascertain a number of physical insights by correlating the spatial regions that contribute the
most to the global error.

For our next example, we use CitcomCU, a CIG code for mantle convection, to solve a thermal convection
problem inside a three-dimensional domain under base heating, stress-free boundary conditions, constant
viscosity, and using a Rayleigh number of 105 in the domain Ω = [0, 1]3. Under these conditions, we expect
the solution to this problem to eventually converge to a steady state consisting of a single convection cell.
We then use Cigma to compare those steady state solutions in order to recover the order of convergence of
the CitcomCU numerical code and to examine how the error behaves on a representative slice of the original
domain.

Again, as in the previous section, we solve the same problem over four different resolutions, and then
use the highest resolution dataset as the reference point for all the subsequent comparisons. The four cases
we will use for this example use 64 × 64 × 64, 32 × 32 × 32, 16 × 16 × 16, and 8 × 8 × 8 elements. In the
following figure, we display the temperature and velocity fields on the y = 0.99 plane, near one of the faces
of the domain. We can distinctly identify an upwelling and downwelling cycle, as well as sharp gradients in
the temperature field. The variations in the velocity field are smoother throughout the slice.
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Figure 5.2: Slice of the steady state temperature and velocity fields for our thermal convection problem,
on the y = 0.99 plane. In the temperature plot (a), we show ten equally spaced contour values. In the
velocity plot (b), the vectors represent the xz-plane components of the velocity, while the colors represent
the velocity magnitude.

Once we obtain the solutions for our four resolutions over 20000 solution steps, we process the ASCII
output data from CitcomCU into a number of rectilinear grids in VTK format (*.vtr files), and a subsequent
*.pvtr file for each solution step.

As a preliminary step, we also need to ensure that each of our cases do indeed reach a steady state.
We can verify this fact numerically by using Cigma to compare the same field at two different times, and
checking that the L2-error is negligible. However, for this problem, we can also visually verify that the
solution has reached steady state by checking that the oscillations in the values of the average heat flux on
the top surface have dampened out, as shown by Figure 5.3,

Figure 5.3: Time variation of average heat flux over top surface.

Our first comparison of two steady states is simple enough. Although it is not critical for this example
since we have already converged, in general time-dependent problems you must ensure you are comparing
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solutions at the same absolute time. Thus, even though it appears that the following command is comparing
two different solution steps, they actually correspond to roughly the same physical time.

$ cigma compare \
-a case64.20000.pvtr:temperature \
-b case32.9900.pvtr:temperature \
-o steady-state.h5:/error_temperature_64_32

Since we did not specify an integration mesh through the -m option, Cigma will take the mesh from the first
field and use it for the integration of the L2 error. We have, however, used the -o option to specify an output
file. This will create the HDF5 file steady-state.h5 after the comparison is complete, and store the results
of that comparison into an array called error_temperature_64_32 under the HDF5 / root group. You may
also refer to the same HDF5 file in subsequent runs of Cigma. The target dataset will be appended to the
file if it doesn’t exist, and overwritten if it does. The commands for other two comparisons are,

$ cigma compare \
-a case64.20000.pvtr:temperature \
-b case16.4700.pvtr:temperature \
-o steady-state.h5:/error_temperature_64_16

$ cigma compare \
-a case64.20000.pvtr:temperature \
-b case8.2100.pvtr:temperature \
-o steady-state.h5:/error_temperature_64_8

Comparisons involving the velocity can be obtained in a similar manner. Note that even though we are
comparing vectors here, the resulting errors will be scalars, since Cigma is integrating the scalar function
||~va(~x)− ~vb(~x)||2.

$ cigma compare \
-a case64.20000.pvtr:velocity \
-b case32.9900.pvtr:velocity \
-o steady-state.h5:/error_velocity_64_32

$ cigma compare \
-a case64.20000.pvtr:velocity \
-b case16.4700.pvtr:velocity \
-o steady-state.h5:/error_velocity_64_16

$ cigma compare \
-a case64.20000.pvtr:velocity \
-b case8.2100.pvtr:velocity \
-o steady-state.h5:/error_velocity_64_8

At this point, you have obtained the local L2-errors for each of the above comparisons, and have stored
them in arrays inside the file steady-state.h5. In order to visualize these errors, you will need to reattach
the original mesh information by using a post-processing utility program called visualize-errors. We can
accomplish this for our six comparisons, by using the following bash comand line,

$ for variable in temperature velocity; do
for b in 32 16 8; do
visualize-errors \
--use-logarithmic-scale \
-m case64.20000.vtr \
-i steady-state.h5:/error_${variable}_64_${b} \
-o log_error_temperature_64_${b}.vtk:log_error_${variable}

done
done
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The first two options we give our post-processing program are important. The first option eliminates the
volume scale factor in the definition of the local L2 error (larger cells contribute more than smaller cells,
which would be more obvious if the error were constant). The second option tells the post-processing program
to use a logarithmic scale for writing those locally averaged errors. Using a log-10 scale makes it much easier
to spot the spatial range of variation in our error fields.

In Figure 5.4, we show two plots representing the errors in the temperature field on the y = 0.99 plane
for the two 16 × 16 × 16 and 32 × 32 × 32 resolutions, relative to the 64 × 64 × 64 temperature solution.
Examining this plot and Figure 5.2a reveals that the largest errors are concentrated in areas where the
temperature gradient is also large, near the boundary layers created by activity from the upwelling and
downwelling. Similarly, the region where the errors are smallest corresponds to a region where both the
temperature gradients and velocity magnitude are at their lowest.

Figure 5.4: Temperature differences on y = 0.99 plane, as compared against case with 64×64×64 elements.

Likewise, in Figure 5.5 we show two plots representing the magnitude of the velocity field on the same
plane. This time, the distribution of the largest errors are spread out more evenly over the domain. In this
case, the largest errors in the velocity field also correspond to regions where the magnitude of the velocity
field is the largest.
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Figure 5.5: Velocity differences on y = 0.99 plane, as compared against case with 64× 64× 64 elements.

5.3 Circular Inclusion Benchmark
In some cases, you will be able to obtain an exact solution to your differential equations. In these cases,
you can extend Cigma by implementing your function directly in C++, and registering a convenient name
under which to call it. In this section, we’ll show you exactly how to accomplish this by considering a
two-dimensional problem for which an exact analytical solution is known. In a 2003 paper [8], Schmid and
Podladchikov derived an analytic solution for the pressure and velocity fields of a circular inclusion under
simple shear, depicted in Figure 5.6. The viscosity parameters introduced are µm for the viscosity of the
matrix, and µi for the viscosity of the inclusion. The kinematic boundary conditions are given generally in
terms of the simple shear strain rate ε̇.
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Figure 5.6: Schematic for the circular inclusion benchmark.

In particular, we place the inclusion of radius ri = 0.1 at the origin, and exploit the symmetry in this
problem by only solving the field on the top right quarter of the domain.
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From [8], we end up with the following analytic formula for the pressure field under the case of simple
shear,

p =

{
4ε̇µm(µi−µm)

µi+µm

(
r2i
r2

)
cos(2θ) r > ri

0 r < ri
(5.1)

where we use µi = 2 for the viscosity of the inclusion, µm = 1 for the viscosity of the background media,
and ε̇ = 1 for the magnitude of the shear. In Cigma, you can refer to this specific analytic solution by the
somewhat verbose name bm.circular_inclusion.pressure, whose definition is summarized in Listing 5.1.

Listing 5.1: Definition of the bm.circular_inclusion.pressure analytic function.
#include Function . h

namespace benchmark {
namespace c i r c u l a r_ i n c l u s i o n {

class Pressure ;
}

}

class benchmark : : c i r c u l a r_ i n c l u s i o n : : Pressure : public cigma : : Function {
public :

Pres sure ( ) {}
~Pressure ( ) {}

virtual void i n i t ( ) { }
virtual FunctionType getType ( ) const { return Function : : GeneralType ; }

virtual int n_dim( ) { return 2 ; }
virtual int n_rank ( ) { return 1 ; }

virtual bool eva l (double ∗x , double ∗y ) {
const double R = 0 . 1 ;
const double mu_m = 1 ;
const double mu_i = 2 ;
const double mag_shear = 1 . 0 ;
const double C = 4∗mag_shear ∗(mu_m∗(mu_i−mu_m)/(mu_i+mu_m))∗R∗R;
const double xc = 0 . 0 ;
const double yc = 0 . 0 ;
const double dx = x [ 0 ] − xc ;
const double dy = y [ 0 ] − yc ;
const double r2 = dx∗dx + dy∗dy ;

i f ( r2 < R∗R) {
value [ 0 ] = 0 . 0 ;

} else {
double theta = atan2 (dy , dx ) ;
va lue [ 0 ] = (C/ r2 ) ∗ cos (2∗ theta ) ;

}

return true ;
}

} ;

One additional step must be taken before we can use the name bm.circular_inclusion.pressure on
the Cigma command line. We must instantiate our new C++ class, and register it under an assigned name
in the constructor defined in the FunctionRegistry.cpp source file.
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Listing 5.2: Assigning the name bm.circular_inclusion to our analytic function.
Funct ionRegis t ry : : Funct ionRegis t ry ( )
{

//
// . . . o ther d e f i n i t i o n s
//

typedef benchmark : : c i r c u l a r_ i n c l u s i o n : : Pressure PressureFn1 ;
shared_ptr<PressureFn1> pre s su r e1 (new PressureFn1 ( ) ) ;
this−>addFunction (bm. c i r c u l a r_ i n c l u s i o n . pres sure , p r e s su re1 ) ;

}

Now that we have an analytic expression for the pressure, we would like to obtain an approximate
numerical solution to this circular inclusion problem. For this purpose we can use Gale, a CIG code for
long-term crustal dynamics. Since the analytic formula for the velocity field is more complicated than the
analytic formula for the pressure, we will simply expand the domain and use the far-field approximation of
the velocity field in order to impose the kinematic boundary conditions in Gale,

vx = +ε̇x (5.2)
vy = −ε̇y (5.3)

Since we expect our solution to vary as p ∼ 1/r2, we target an error of 0.01% by enlarging the domain under
consideration to about 80 times the radius of the inclusion. This results in the final domain Ω = [0, 8]2.

Figure 5.7: Pressure field for circular inclusion problem, with resolution of 512× 512 elements.

First, we’d like to see how well the Gale solutions converge to a common answer by comparing each other
against the highest resolution field available. Since we only have three solutions, that leaves us with only
two meaningful comparisons,

$ cigma compare \
-a 512_8/fields.00000.pvts:PressureField \
-b 128_8/fields.00000.pvts:PressureField \
-o inclusion.h5:/error_pressure_512_128

$ cigma compare \
-a 512_8/fields.00000.pvts:PressureField \
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-b 256_8/fields.00000.pvts:PressureField \
-o circ_inc.h5:/error_pressure_512_256

whose results we summarize in the following Table.

n hn ||pn − p512||L2/
√
V

128 0.088388 0.0040745
256 0.044194 0.0015786

from which we can estimate the order of convergence α = log(0.00158/0.00407)/ log(0.0442/0.0884) =
1.36.

Processing the local error fields stored in circ_inc.h5, we obtain the following plots,

Figure 5.8: Errors in pressure field for 128× 128, and 256× 256 cases, relative to the 512× 512 case, shown
over the entire domain.
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Figure 5.9: Errors in pressure field for 128× 128, and 256× 256 cases, relative to the 512× 512 case, shown
near the inclusion.

Next, we compare each of the three pressure fields obtained with Gale against the analytical formula for
the pressure given earlier. We accomplish that by invoking the following bash command line,

$ for r in 512 256 128; do
cigma compare \
-a ${r}_8/fields.00000.pvts:PressureField \
-b bm.circular_inclusion.pressure \
-o inclusion.h5:/errror_pressure_${r}

done

whose output we summarize in the following table,

n hn ||pn − p||L2/
√
V

128 0.088388 0.0050388
256 0.044194 0.0036636
512 0.0022097 0.0024535

from which we can obtain the order of convergence α = 0.5, via a power-law regression analysis. Such a
low value of α is expected since the pressure function we are solving has a discontinuity across the inclusion
boundary.

After processing the errors in inclusion.h5 with the utility program visualize-errors, we obtain the
following plots of the pressure field differences,
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Figure 5.10: Errors in pressure field for 256× 256 and 512× 512 element resolutions, relative to the analytic
formula, shown over the entire domain.

Figure 5.11: Errors in pressure field for 256× 256 and 512× 512 element resolutions, relative to the analytic
formula, shown near the inclusion.

The only appreciable change between these two plots happens in the region near the inclusion boundary,
which becomes slightly more resolved spatially. Also, in contrast to the previous two sections, we do not
detect much of a color shift between two plots, even though the L2 global error is indeed decreasing. This
is due to the fact that the error remains large near the inclusion with approximately the same maximum
value, making it harder to see any variation in the local error field.

In summary, we have observed that for this problem the L2 global error does indeed decrease as we
increase the mesh resolution, but it does not do so at the optimal rate. This indicates that the numerical
scheme used to obtain these solutions is not completely accurate. Note that many numerical codes that
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solve Stokes flow, Gale included, assume that the pressure, velocity, and viscosity fields are continuous, an
assumption that is violated for this particular problem.



Appendix A

Input and Output

A.1 Supported File Formats
Cigma can understand a number of file formats, depending on how it is configured (see Chapter 2). By
default it will read and write all information in binary form as HDF5 files, which is a format optimal for
archiving data with minimal redundancy. VTK files are also sometimes used by finite element software, due
to the ease with which the solution fields can be visualized. Lastly, ExodusII mesh files generated by the
CUBIT mesh generation package can also be used directly as integration meshes.

The most flexible way to store your arrays will be to use an HDF5 file (with extension .h5), which
will allow you to organize your arrays in a hierarchy. The h5attr allows you to add or modify any scalar
metadata attributes to any HDF5 group or array.

You can also use a simple text file (with extension .dat) containing a single array in row-column format.

.h5 input/output HDF5 Format
.dat input/output Text Format
.vtk input/output Legacy VTK Format
.vtu input VTK File for Unstructured Datasets
.vts input VTK File for Structured Datasets
.vtr input VTK File for Rectilinear Datasets
.exo input Exodus Mesh Format

Table A.1: Overview of Cigma’s file formats

A.2 Data Formats
The basic data structure is a two-dimensional array of values, stored in a contiguous format as shown below:

Array shape (m,n)
Array Data a11, a12, . . . , a1n

a21, a22, . . . , a2n

· · ·
am1, am2, . . . , amn

This layout is sufficient for describing both 2- and 3-dimensional data. Note the second index in this
array varies the fastest, so that data often referenced together remains together in memory as well.

A.2.1 Node Coordinates
On a mesh with nno node coordinates, which are specified on a global coordinate system, we have,

41
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Array Shape (nno, 3)
3D Coordinates x1, y1, z1

x2, y2, z2

...
xnno

, ynno
, znno

Array Shape (nno, 2)
2-D Coordinates x1, y1

x2, y2

...
xnno

, ynno

A.2.2 Element Connectivity
Mesh connectivity is specified at the element-block level. On a given block, we only consider a single element
type, which allows us to store the global node ids into a contiguous array of integers. Multiple blocks are
specified separately, and they all reference the same node ids into the node coordinates table.

In general, if our block contains k elements with m-degrees of freedom each, then the connectivity array
defining our element block has the form

Array Shape (k,m)
Connectivity Data n11, n12, . . . , n1m

n21, n22, . . . , n2m

...
nk1, nk2, . . . , nkm

For the element types defined in Cigma, the values for m are as follows. Note that the total number of
degrees of freedom depends on the rank of the specific function being represented.

3D Element Scalar Vector Tensor
tet4 4 12 24
tet10 10 30 60
hex8 8 24 48
hex20 20 60 120
hex27 27 81 162

Similarly for the 2D elements, we have

2D Element Scalar Vector Tensor
tri3 3 6 9

quad4 4 8 12

A.2.3 Field Variables
A field variable represents one of the functions that we can evaluate, and is typically stored over a series
of timesteps. The data for a field variable consists of snapshots through time, which are stored as separate
arrays. A value for each degree of freedom is provided on the global list of nodes in the mesh. The ordering
must be the same as the ordering of the node coordinates.

A.2.4 Shape Function Values
In certain circumstances you may be able to provide your custom reference element by simply providing the
appropriate n shape function values to be used at the expected integration points. This is most useful when
you are using the same mesh for both the integration mesh and the array.
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Array Shape Shape Function Values: (n,Q) Jacobian Determinant: (Q, 1)

Integration Point 1 N1(~ξ1), N2(~ξ1), . . . , Nn(~ξ1) J(~ξ1)
Integration Point 2 N1(~ξ2), N2(~ξ2), . . . , Nn(~ξ2) J(~ξ2)

...
...

...
Integration Point Q N1(~ξQ), N2(~ξQ), . . . , Nn(~ξQ) J(~ξQ)

A.2.5 Integration Rules
As mentioned in Section 4.3.2, an integration rule is specified by a list of points and associated weights. The
points should be specified on the natural coordinate system used by the corresponding reference element.

Array Shape Weights: (Q, 1) Points: (Q,ndim) 2D Points: (Q, 2) 3D Points: (Q, 3)

Rule Definition w1
~ξ1 ξ1, η1 ξ1, η1, ζ1

w2
~ξ2 ξ2, η2 ξ2, η2, ζ2

...
...

...
...

wQ ~ξQ ξQ, ηQ ξQ, ηQ, ζQ

A.2.6 Integration Points and Values
Given a mesh and an integration rule, we can map the integration points on each element into a possibly
large set of global points.

Array Shape Points: (npts, ndim) 2D Points: (npts, 2) 3D Points: (npts, 3)
Coordinates ~x1 x1, y1 x1, y1, z1

~x2 x2, y2 x2, y2, z2

...
...

...
~xnpts xnptsynpts xnpts , ynpts , znpts

The result of an evaluation will depend on the rank of the function being evaluated, as indicated in the
table below. Note that the fastest varying dimension of the array contains the components of the function
value at each point.

Evaluated Quantity Resulting Array Shape
Scalar (npts, 1)

2D Vector (npts, 2)
3D Vector (npts, 3)
2D Tensor (npts, 3)
3D Tensor (npts, 6)

A.2.7 Local L2-errors
Since our norm reduces integrals over cells to a single scalar value, the result of a comparison will result in
a simple scalar array for each element block examined. Note that element blocks used in the integration
process belong to the integration mesh, which may differ from the associated mesh to either function.

Thus, for each element block containing k cells, we have the output array

Array Shape (k, 1)
Error Value ε1

ε2

...
εk
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These error values may be combined in the following form:

εblock =
√
ε2

1 + ε2
2 + · · ·+ ε2

k

The final global error norm maybe obtained by simply summing over all element blocks that partition the
domain of interest:

εglobal =
√∑
block

ε2
block

Currently, this last calculation can only be performed using a problem-specific post-processing script, since
Cigma will only perform comparisons on a single element block.

A.3 Input Files
In Section A.2, we examined what kinds of objects we will be accessing, so now let’s discuss the actual layout
in the files in which these objects will be stored.

A.3.1 HDF5
HDF5 files are binary files encoded in a data format designed to store large amounts of scientific data in a
portable and self-describing way.

The internal organization of a typical HDF5 file consists of a hierarchical structure similar to a UNIX
file system. Two types of primary objects, groups and datasets, are stored in this structure. A group
contains instances of zero or more groups or datasets, while a dataset stores a multi-dimensional array of
data elements. In a sense, datasets are analogous to files in a traditional file system, and groups are analagous
to folders. One important difference, however, is that you can attach supporting metadata to both kinds of
objects. These associated metadata are known as attributes.

A dataset is physically stored in two parts: a header and a data array. The header contains miscellaneous
metadata describing the dataset as well as information that is needed to interpret the array portion of the
dataset. Essentially, it includes the name, datatype, dataspace, and storage layout of the dataset. The name
is a text string identifying the dataset. The datatype describes the type of the data array elements. The
dataspace defines the dimensionality of the dataset, i.e., the size and shape of the multi-dimensional array.

With Cigma you always provide an explicit path to specific datasets, so you have a fair amount of
flexibility in how you organize datasets into groups inside your HDF5 files. For example, a typical file could
have the following structure,

file.h5
\__ model

|__ mesh
| |__ coordinates [nno x nsd]
| \__ connectivity [nel x ndof]
\__ variables

|__ temperature
| |__ step00000 [nno x 1]
| |__ step00010 [nno x 1]
| \...
|__ displacement
| |__ step00000 [nno x 3]
| |__ step00010 [nno x 3]
| \...
\__ velocity

|__ step00000 [nno x 3]
|__ step00010 [nno x 3]
\...
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where the structure of the mesh does not change from timestep to timestep.
Alternatively, a file which stores data associated with a mesh that changes over time would have a different

structure,

file.h5
\__ model

|__ step00000
| |__ mesh
| | |__ coordinates
| | \__ connectivity
| |__ variables
| |__ temperature
| |__ displacement
| \__ velocity
|__ step00010
| |__ mesh
| | |__ coordinates
| | \__ connectivity
| |__ variables
| |__ temperature
| |__ displacement
| \__ velocity
\__ ...

where we have allowed for each.
To summarize, Cigma requires you to specify a full path to a specific dataset. Moreover, by attaching a

small amount of metadata to your datasets, it becomes possible to reduce the amount of information that
must be provided to the comparison routine, such as what mesh to use in conjunction with a given set of
coefficients, and which set of shape functions to use in the respective evaluations.

MeshLocation is a string representing the HDF5 path pointing to the mesh group which contains the
coordinates and connectivity datasets. This attribute should be attached to the array corresponding
to your degrees of freedom (shape function coefficients).

CellType is a string identifier used to determine which shape functions to use for interpolating values inside
the element (e.g., tet4, hex8, quad4, tri3, ...). This attribute should be attached to the mesh group
that contains the coordinates and connectivity datasets.

Even if you forgot to set these attributes when creating your HDF5 datasets, setting or changing them can
be done easily by using the h5attr utility included in Cigma. For example, the following command would
let Cigma know that the path /model/mesh corresponds to a linear tetrahedral mesh

$ h5attr model.h5:/model/mesh CellType tet4

Likewise, the following command would associate the mesh /model/mesh with the field coefficients /model/
variables/temperature/step00000

$ h5attr model.h5:/model/variables/temperature/step00000 MeshLocation /model/mesh

Setting the MeshLocation attribute in this manner has the advantage that corresponding mesh options can
be omitted when calling cigma compare on the command line.

A.3.2 VTK
For detailed information on this format, you may want to refer to Visualization ToolKit’s File Formats
(www.vtk.org/pdf/file-formats.pdf) document. Here we will only note that using VTK files is convenient

www.vtk.org/pdf/file-formats.pdf


46 APPENDIX A. INPUT AND OUTPUT

due to the fact that the mesh is always required by the file format. You typically only need to provide the file
name, and the name of the dataset inside the file that you wish to use in the comparison operation, although
you may safely omit the dataset name if your VTK file contains only a single point dataset. Perhaps one of
the most important things to keep in mind, when using VTK files with the current version of Cigma, is that
unstructured datasets will need to consist of cells of a single type.

A.3.3 Text
The text files we use in Cigma consist of a simple list of numbers in ASCII format whose layout corresponds
exactly to the simple array layout discussed earlier in Appendix A.2. The first line of the file contains the
dimensions of the array, just two integers separated by whitespace. The rest of the file specifies the array
data, and must contain as many numbers as the product of the two dimensions given in the first line, all
separated by whitespace. These numbers should be formatted as integer or floating point, depending on
whether you are describing coordinates or coefficients, or whether you are referring to a connectivity array.

Some restrictions apply when providing data in text format, mostly because you can only specify a single
element block in a text file containing connectivity information. Operations involving a larger number of
blocks must use data in the format described in Appendix A.3.1.

Another point worthy of mention is that arrays must be given in two-dimensional form, i.e., two integers
are always expected in the first line. Therefore, when specifying a one-dimensional array, such as a list of
weights corresponding to an integration rule, the second array dimension must be 1.

A.4 Output Files
For the most part, there are three different kinds of output files you can use, as already summarized in
Appendix A.1. Switching output formats is as simple as changing the extension of the output file name.

The result of all comparisons always consists of a one dimensional list of scalars, one for each element in
the underlying discretization used to approximate the L2-norm integral. You can output these error values
directly into a VTK file, in which case the array will be stored in the Cell Data section of the output file.
Since Cigma includes a post-processing utility called visualize-errors that can convert HDF5 errors into
VTK files, we recommend that you use HDF5 files to store the result of your comparisons. Note that HDF5
files will not be overwritten when used for output, which allows you to store multiple datasets inside the
same HDF5 file without keeping redundant mesh information as is typically the case when using VTK files.
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